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Introduction: Animal behavioral models have become an indispensable tool

for studying anxiety disorders and testing anxiety-modulating drugs. How-

ever, significant methodological and conceptual challenges affect the transla-

tional validity and accurate behavioral dissection in such models. They are also

often limited to individual behavioral domains and fail to target the disor-

der’s real clinical picture (its spectrum or overlap with other disorders), which

hinder screening and development of novel anxiolytic drugs.

Areas covered: In this article, the authors discuss and emphasize the impor-

tance of high-throughput multi-domain neurophenotyping based on the

latest developments in video-tracking and bioinformatics. Additionally, the

authors also explain how bioinformatics can provide new insight into

the neural substrates of brain disorders and its benefit for drug discovery.

Expert opinion: The throughput and utility of animal models of anxiety and

other brain disorders can be markedly increased by a number of ways:

i) analyzing systems of several domains and their interplay in a wider spec-

trum of model species; ii) using a larger number of end points generated by

video-tracking tools; iii) correlating behavioral data with genomic, proteomic

and other physiologically relevant markers using online databases and

iv) creating molecular network-based models of anxiety to identify new tar-

gets for drug design and discovery. Experimental models utilizing bioinfor-

matics tools and online databases will not only improve our understanding

of both gene--behavior interactions and complex trait interconnectivity but

also highlight new targets for novel anxiolytic drugs.

Keywords: animal models, anxiety, behavioral phenotyping, bioinformatics,

neurobehavioral domains
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1. Introduction

Anxiety and anxiety-spectrum disorders are becoming increasingly prevalent in
modern society, requiring new therapeutic approaches and treatments [1-3]. Affective
disorders are also complex, showing high co-morbidity within and outside the anx-
iety spectrum [4-7]. As drug discovery shifts toward targeting specific pathways and
molecular determinants, versatile translational experimental models are important
for preclinical drug screening [8]. Although constant refinement of existing experi-
mental paradigms is necessary [9], it is crucial to make further conceptual advances
in this field [10,11], especially because of the domination of single-domain animal
models of anxiety and the lack of complex models that target several different
domains and their interplay (see Table 1 and [10,12-13] for details).

Recently, we outlined strategic directions for experimental modeling of affective
disorders [10]. While there has been remarkable progress in this field, new challenges
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have arisen [14] and are briefly addressed here. We argue that
multi-dimensional and multi-domain neurophenotyping of
anxiety can be facilitated by the combined application of
modern video-tracking and data-mining technologies to max-
imize the validity and accuracy of animal models. We also
discuss how bioinformatics enables further unprecedented
insights into the neural substrates of brain disorders, creating
interactomes, connectomes and other omes to apply to affec-
tive disorders. Together with high-throughput -omics, they
complement multi-domain behavioral analyses to advance
our understanding of affective pathogenesis and reveal novel
targets for anxiolytic drugs (Table 1).

2. Strategic directions of basic anxiety
research

2.1 Moving farther beyond traditional rodent

paradigms
Critical for translational cross-species analysis (Figures 1

and 2), the increase in the range of model species is an impor-
tant direction of affective research [8]. Exhibiting a significant
physiological homology to humans, zebrafish (Danio rerio)
are rapidly gaining popularity due to their robust anxiety-
like responses to various experimental manipulations [15-19],
including novelty or predator exposure [20-22] and drug
withdrawal [23-26]. Mounting evidence shows that zebrafish
are sensitive to a wide range of psychotropic compounds, con-
firming their utility to study anxiety [17]. The responses to
such compounds generally parallel rodent and clinical obser-
vations, further confirming the translational value of zebrafish
tests [16,23]. Combined with rapid development, high fecun-
dity and low costs, the potential of both larval and adult
zebrafish for high-throughput anxiolytic drug discovery is
becoming widely recognized [16,17,19].
Recent reports have also demonstrated the validity and

utility of the chick (Gallus gallus) as an animal model of

anxiety under both acute and repeated administration [27,28].
While many clinical signs of anxiety and depression exist
along a temporal continuum, chicks have been a useful model
in exemplifying this construct by showing distress vocaliza-
tions that sequentially model anxiety- and depressive-
like states [29,30]. Importantly, this assay is fast, inexpensive
and has been repeatedly validated as a pharmacological screen
of substances that modulate anxiety behavior [29-31].

Anxiety-like behavior has also been extensively studied
in non-human primates [32], whose marked behavioral
complexity resembles that of humans [33-35]. Despite high
costs associated with primate research, monkeys are
increasingly used to model social anxiety-related behaviors,
aggression [33,36-37] and post-traumatic stress [38]. They also
show homology of the neural circuits of fear and anxiety
between monkeys and human adults with childhood history
of extreme behavioral inhibition [39,40]. Given these promis-
ing traits, expanding the range of animal model species con-
tinues to be a strategic priority in experimental modeling of
anxiety disorders.

2.2 Focus on pathogenetic complexities
In addition to behavioral paradigms, there is a growing
need for targeting physiological phenotypes of affective dis-
orders [41]. 5-HT, GABA and corticotropin-releasing hor-
mone (CRH) have been shown to mediate anxiety and
stress-related behaviors [41], and the disruption of genes
associated with these systems has been linked to altered
anxiety [42-47]. The function of CRH-mediated genes in
stress-related psychopathology has been of particular interest
recently, revealing maladaptive stress responses following
experimental alterations in these genes [48-51]. Similarly,
c-fos expression is a marker of neuronal activation in
rodents [52-54] and zebrafish [55-57] and has been shown
to correlate with environmentally or pharmacologically
induced anxiety [53,54,58].

Numerous reports have demonstrated alterations in gene
expression corresponding to anxiety-like behavior in various
species from rodents [59-61] to primates [62-64], and can help
identify appropriate targets for therapeutic intervention [65-67].
For example, differential expressions of guanine nucleotide-
binding protein b 1, cadherin 7 and calcium-calmodulin-
dependent protein kinase II (CaMKII) inhibitor have recently
been associated with anxiety-like behavior [68]. In line with
this, anxiety-like behavior induced by microinjection of
CRH receptor agonists into rat brain is blocked by CaMKII
inhibitors, exemplifying the potential for therapeutics based
on the overlap between the two candidate pathways [69].
Furthermore, the effects of gene disruption on anxiety and
drug responsivity have also been evaluated [70-73]. For
example, the deletion of the prodynorphin gene in mice
increases anxiety-like behaviors and GABAA receptor subunit
expression, while attenuating the anxiolytic action of
bromazepam [70]. Similarly, deletion of mouse cannabinoid
CB1 receptors increases anxiety-like behaviors and decreases

Article highlights.

. Increasing the range of model species is critical for
affective research.

. Targeting physiological phenotypes of affective disorders
warrants greater focus on pathogenic complexities.

. Assessing systems of integrated domains helps
characterize complex neurobehavioral phenotypes.

. Innovative approaches including data-dense
video-tracking and data-mining technologies are
emerging as useful new methods to characterize
anxiety-like phenotypes.

. Experimental models utilizing bioinformatics tools and
online databases are needed to understand the
gene--behavior interactions, complex trait
interconnectivity and new targets for novel
anxiolytic drugs.

This box summarizes key points contained in the article.
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proopiomelanocortin gene expression, while reducing the
anxiolytic action of bromazepam [71].

Due to the development of microarray techniques, a rapid
high-throughput analysis of the activity of multiple genes
became possible [61,74-75]. Occasionally described as ‘fishing
expeditions’ by some critics, such high-throughput genome-
wide screens have tremendous potential for uncovering new
gene networks and pathways of anxiety [76-78]. We argue that
global genome-wide interrogation needs further appreciation
from the scientific community studying affective disorders
and should be encouraged in anxiety research to comple-
ment more specific, mechanistically driven single-gene or
single-pathway analyses.

2.3 Applying new behavioral analyses
As already mentioned, current behavioral phenotyping meth-
ods are often limited to examining individual domains within
a multifaceted disorder. However, such myopic focus in a
model may fail to describe the complex dynamics of the disor-
der in question, and is inconsistent with clinical diagnoses
representing an integral continuum with common genetic
and environmental factors [12]. The domain interplay concept
(Table 1) offers a new strategy to dissect complex neurobeha-
vioral phenotypes, assessing systems of integrated domains
rather than individual behaviors [12,79]. For example, with
common neural, genetic and environmental determinants, it
is not surprising that anxiety and depression are highly co-
morbid [80]. While these disorders have traditionally been
modeled individually, the recent conceptualization of anxiety
and depression as a common affective spectrum calls for mod-
els to mimic this continuum [29,30]. By virtue of focusing on
the interplay of already integrated domains, the domain inter-
play concept is also suitable for the integration of affective and
non-affective phenotypes, given the complex ‘continuum’
nature of brain pathogenesis which is becoming widely
recognized in biological psychiatry [81-84].

With the advent of video-tracking and data-mining
technologies, new methods are emerging to characterize and

quantify anxiety-like phenotypes [85]. For example, three-dimen-
sional (3D) imaging has been recently applied to zebrafish
behavior [86] using data-mining IT tools to extract and integrate
manual and automated anxiety-related end points (see [18,87] for
details). While the field of zebrafish neurobehavioral research is
rapidly expanding, fast and objective quantification of behavior
is needed to supplement the often time-consuming and
variation-prone manual registration. The 3D approach allowed
a dissection of complex behavioral responses across multiple
automated end points, identifying previously undetectable
behavioral events sensitive to anxiolytic and anxiogenic drugs
and mapping them within 3D coordinates [18,86-87], and apply-
ing intuitive visualization to globally evaluate and interpret the
observed affective states [86-90].

Mounting research has also focused on temporal aspects
and global assessment of animal anxiety-related behavioral
activity. For example, near-infrared illumination in the
PhenoScan system (CleverSys, Inc., Reston, VA, USA) ena-
bles tracking of animals over a 24-h period, without detriment
to light-cycle behavior [91-93]. A similar approach has been
used with TSE (TSE Systems, Bad Homburg, Germany) phe-
notyping tools [94,95]. Such constant monitoring complements
multi-dimensional and multi-domain neurophenotyping to
maximize model validity and accuracy, and enables a less inva-
sive assessment of acute or delayed behavioral responses to
pharmacological challenge. The latter may be particularly use-
ful for testing strains with high basal anxiety, preventing ceil-
ing/floor effects or performing more ethological assessment of
drug action. Notably, these methodologies have only become
possible due to the recent availability of technologies and
tools, and further exciting developments in this field will
emerge soon.

2.4 Applying bioinformatics for analyses of anxiety

behaviors and -omics
In models attempting to reproduce the entire syndrome of
complex disorders, the need for multiple simultaneous end
points makes it difficult to apply the experimental

Table 1. Glossary of terms.

. Bioinformatics is the application of statistics and computational techniques to the field of biology, with the primary goal of
increasing our understanding of the mechanisms and interconnectivity of biological processes

. Domain is the specific cluster of behavioral phenotypes based on contextual similarity within a disorder. Typical domains affected by
pathogenesis include locomotor, emotionality, cognitive, neurological or sensory components. In biological psychiatry, each disorder
(such as anxiety) can be deconstructed into multiple endophenotypes, which can then be clustered into larger groups (domains). The
domain interplay concept [12,13,79] postulates that various domains overlap within a specific disorder or even between different
disorders, thereby underlying complex spectra of psychiatric disorders. The domain interplay concept also posits that a similar
approach -- targeting a system of overlapping, clinically relevant domains -- may be applied to animal models. The more overlapping
domains are observed in both clinical and experimental models, the more valid these experimental models of human disorder would
be according to this concept. We apply the term domain in this paper in the same context as it is used in the domain interplay
concept [12,13,79]. For example, in rodent models of anxiety, research assessing multiple domains typically analyzes not only
affective, but also locomotor and cognitive domains and their interactions. For the model to be valid, these domains would have to
be similarly affected in the disorder between clinical and experimental data

. The concept of omes is used to describe a system of interacting entities of biological information (see Table 3 for examples of
specific omes). Similarly, the term -omics pertains to the study of an ome-based system. A primary aim of -omics analyses is
mapping the interactions and relationships among the biological objects comprising an ome
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manipulations to establish underlying mechanisms [96]. The
proposed focus on modeling several domains and the use of
modern video-tracking tools described above make this task
even more challenging due to multiple end points per
domain, resulting in a rapidly increasing amount of
behavioral data. Therefore, the use of bioinformatics tools
becomes crucial to examine this amount of data and identify
patterns and phenotypes, as well as to decipher multiple
interconnected underlying physiological pathways.
The era of genomics is rapidly impacting experimental anx-

iety research, as genetic factors play an important role in
affective disorders, and complex traits cluster based on their
genetics [97-100]. High-throughput genomics has provided an
extraordinary view into the genetic architecture of animal
and human behavior, the interconnectivity of complex
traits [101,102] and ‘network’ models of animal anxiety pheno-
types (powered by bioinformatics analyses and extensive pub-
licly available online databases; Table 2), which are crucial to
explore affective processes [10,103-105]. For example, web-
based tools, such as Lirnet and eQTL Viewer (Table 2),
offer efficient and intuitive methods to explore transcrip-
tional regulation [106], while the Mouse Phenome Database
(MPD), Mouse Genome Informatics (MGI) or PhenoGen
(Table 2) integrate genetic, genomic and other biological
data to facilitate gene characterization, mapping and the iden-
tification of inter-strain phenotypes. With the availability of
marker information from HapMap or GenBank databases
(Table 2) and high-density single nucleotide polymorphism
(SNP) genotyping platforms, the correlations between candi-
date genes and their contribution to a behavioral phenotype
also becomes possible (Figure 3) [107].

The premise of such approaches is that an amalgamation of
candidate genes for a particular phenotype may lead to a func-
tional explanation of the etiology of that phenotype [108]. For
example, a specific mouse anxiety-related phenotype in one
research project (e.g., vertical rears in the open-field test)
can now be linked to a gene or chromosomal region through
the MPD or to specific gene mutations using MGI (Table 2).
Furthermore, two different projects (e.g., one behavioral and
another microarray-based) performed in two different labora-
tories on the same mouse strain can be correlated together in
the same way for the integrated search of anxiety phenotypes
and markers (Figures 2 and 3). The identified mouse gene
can then be linked to human analogs using the Online Men-
delian Inheritance in Man browser or run through a genome-
wide association study database to identify a list of candidate
SNPs that correlate with human variation in anxiety pheno-
type susceptibility, thus linking biological data across different
species (Figures 2 and 3).

More specific intra-species strain analyses are also possible
with this approach. For instance, a recent gene expression
analysis of C57BL/6J and A/J mouse inbred strains using
MPD revealed gene network specificity for different brain
regions and limited interaction effects between these strains
and brain region [109]. Strain differences in behavioral
responses to stress can also be accompanied by differential
expression in various anxiety-related genes [104,110-111]. For
example, genetically driven variation in corticolimbic func-
tion underlies individual differences in anxiety responses [112],
as stress upregulates circadian genes in DBA/2J mice but
mainly alters plasticity-related genes in C57BL/6J strain.
Such omics-based analysis shows how the corticolimbic ‘stress’

A. B.

Domain complexity

Model validity

Anxiety disorder

Animal model

Humans

Larval zebrafish Throughput
Zebrafish

Phenotypical complexity

Costs

Mice

Figure 1. Translational cross-species modeling approach to anxiety and anxiolytic drug research. Panel A shows phenotypical

complexity, throughput and cost-efficiency of several popular model species (humans, mice, adult and larval zebrafish). Panel

B illustrates how the validity of various experimental models can increase, based on domain interplay concept (see Table 1 for

details), as modeling shift from focusing on single domains to modeling a system of domains. In this panel, anxiety disorder is

shown as a larger circle (two parallel circles represent anxiety-like states in two different species, such as mice and humans).
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network may be underscored by various gene sets serving as
correlates of the divergent behavioral responses to anxiety in
DBA/2J and C57BL/6J mice [111].

Another promising application of genomic approaches is
mapping quantitative trait loci (QTLs) for behavioral disor-
ders [113,114]. Numerous reports have already identified QTLs
for anxiety behavior in various animal models [115-118], includ-
ing translationally valuable QTLs with homologous regions on
human chromosomes [117,119]. Furthermore, the ability to use
mean phenotypic values from inbred strains to map likely
genomic locations of QTLs ‘in silico’ markedly accelerates
genetic analysis of animal disease models [114]. As an alternative
to traditional QTL mapping, in silico mapping simultaneously
exploits phenotypic, genotypic and pedigree data already avail-
able in breeding programs [114,120]. This computational
method can predict the chromosomal regions that most
likely contribute to complex traits of experimental intercross
populations for multiple traits analyzed, while exponentially
reducing the time required for analysis [114]. Application of
this approach to genetics of anxiety-related phenotypes may
reveal further clusters of candidate genes, again leading to
potential new molecular targets for anxiolytic compounds.

Further development in the integration of heterogeneous
data, in particular gene and protein expression pathways,
will also be critical for -omics data interpretation. Deciphering
such networks poses one of the greatest challenges in current
systems biology [121], crucial for the successful elucidation
of pathways and circuits involved in anxiety. While the

typical approach to microarray analysis is to map a posteriori
the results onto gene networks to dissect pathway-level
expression changes, integrating a priori knowledge of the
gene networks may provide even more powerful analysis [122].
For example, recent work based on the spectral decom-
position of gene expression profiles to filter out high-
frequency components with respect to known pathways has
already produced more biologically relevant results that allow
for a direct biological interpretation [122]. Moving beyond
technological approaches, public servers such as GraphWeb
(Table 2) have emerged as another promising avenue, allowing
users to integrate heterogeneous and multispecies data in
order to construct and interpret individual or multiple
merged networks [121,123-124].

2.5 Applying various omes to anxiety research
In addition to genomic responses, mounting evidence links
proteome changes to certain anxiety states, showing altered
patterns of protein expression and genotypic differences rele-
vant for anxiety phenotypes [125-127]. For example, alterations
in proteins related to serotonin receptors, carbohydrate
metabolism, cellular redox system and synaptic docking are
involved in anxiety [127]. Thus, research focusing on the recep-
torome can be useful in identifying molecular targets and
characterizing the interactions between interconnected signal-
ing pathways affected by experimental or pharmacological
manipulations [128-130]. For example, receptorome screening
has been important in determining that the k-opioid receptor

Identifying common
pathways (I)

Zebrafish

Humans

Phenotypical
complexity

Mice

Candidate drug targets (II)

Non-overlapping
pathways 

Drug target 
validation (III)

Figure 2. The strategy of anxiolytic drug discovery based on identifying common, evolutionarily conserved ‘core’ affected

genetic/molecular pathways (I), followed by the development of novel drugs targeting these pathways (II) and their

subsequent validation based on the ability to affect anxiety phenotypes and the identified molecular targets (III).
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Genes Behavior B1m G2m G2HB2m B2H

Specialized searchable databases

Identification of novel
pathways and drug targets  

Identification of novel pathways
and drug targets 
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B.
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C
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Figure 3. The role of bioinformatics tools in shaping anxiolytic drug research. Previously, as shown in Panel A (left), behavioral and -omic data (e.g.,

genomic profiles) were correlated within the same laboratory (laboratory A), leading to a limited number of phenotypes and implicated pathways

obtained in a single model species (e.g., mice). As shown in the right part of Panel A, currently available searchable databases (see Table 2 for details)

enable complex data integration and interrogation, including correlation of mouse behavioral data (B1m) obtained in one laboratory (Laboratory B)

with genomic (G2m) or behavioral (B2m) data obtained in a different laboratory (Laboratory C) working with the same model species. Furthermore,

cross-species translational analyses using these databases enable comparison of mouse anxiety-like behavioral phenotypes B1m (obtained in laboratory

A) with human behavior B2H collected and deposited by a clinical Laboratory D. Similarly, the implicated mouse gene networks G2m (from Laboratory

C) can be paralleled with the homologous human genes G2H (from Laboratory D) to identify potential drug targets. Panel B illustrates how

information from various currently available databases (see Table 2 for details) can be used to advance knowledge about anxiety disorders and their

pathways in different species. In this hypothetical case, the Kalueff laboratory (Laboratory A; Tulane University in New Orleans, LA, USA) accessed

Mouse Phenome Database (step 1) to obtain data on C57BL6/J mouse open field vertical rears generated in 2005 by the Brown laboratory (Laboratory

B; Dalhousie University, Halifax, Canada; step 2) and correlates them with genomic data obtained in 2007 by the Tabakoff laboratory (Laboratory C;

University of Colorado in Denver, CO, USA; step 3). This analysis identified 20 -- 30 genes showing highly significant and consistent correlation in several

behavioral tests of anxiety, suggesting that some of these genes may represent drug targets for novel anxiolytic drugs. Molecular network analysis

performed by Lab A identified several specific pathways implicated in mouse anxiety (step 4), which will then be used by a zebrafish group (Laboratory

D; the University of Texas Health Sciences Center San Antonio, TX, USA) to parallel mouse genes with zebrafish orthologs and reconstruct zebrafish

genes which may be implicated in anxiety behaviors. Subsequent microarray experiments performed in this lab will re-confirm a group of ~ 10 genes

from that list, whose expression was altered in zebrafish exposed to anxiety tests (step 5). This information will be deposited by Laboratory D to the

Zebrafish Neurophenome Database, maintained by Laboratory A, to become available to a large number of zebrafish researchers worldwide (step 6).

Meanwhile, the pattern of expression of the specific mouse genes identified as a ‘candidate’ during the previous steps 3 - 4 can be examined for their

regional distribution using Allen Brain Atlas database (Laboratory E, Seattle, WA, USA), revealing specific affected brain areas which may represent a

novel circuit for anxiety-related behaviors (step 7).
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is the pharmacological target of salvinorin A [131-133]. Recep-
toromics has also been utilized to discover novel therapeutic
treatments, such as the observation that mGluR2/3 agonists
can have anxiolytic effects [134].
Recent research has also applied metabolomics, including

modeling metabolic networks [135-137] and biomarkers [137,138].
For example, in utero labeling of mice using a 15N-enriched
diet has been used for metabolomic analysis to reveal differen-
tial levels of metabolites in several mouse strains with different
anxiety levels [139]. Moreover, metabolome models may also
be used to predict changes in metabolic state in response to
drug treatment (i.e., pharmacometabolomics) [140]. The appli-
cation of a metabolomic analysis is critical in psychopharma-
cological research, as the understanding of metabolites and
their interactions gives insight into the mechanistic pathways
affected by experimental challenge. This level of analysis can
also elucidate the progression of pathogenic conditions, such
as anxiety spectrum disorders, as well as the co-morbidity of
such pathology with metabolic syndromes. For example, the
mechanism by which neuropeptide Y and the endocrine stress
axis (CRH and cortisol) integrate in response to acute or
chronic stress has been shown to markedly affect obesity and
related metabolic pathways [141].
Growing efforts are also being made to develop a connection

matrix to comprehensively map the neural connections of the
brain [142-145]. This connectome-based analysis increases our

understanding of how affective processes emerge from their
morphological substrates, providing new mechanistic insights
into how brain function is affected if this structural substrate
is disrupted [145]. The connectome has been assessed from the
level of single neurons and synapses (microscale) and the level
of anatomically distinct brain regions and inter-regional path-
ways (macroscale) [145]. Recently, clinical functional imaging
has revealed a universal architecture of positive and negative
functional connections as well as consistent loci of inter-
individual variability [146]. While primarily focused on the nor-
mal human brain, future work may also expand our knowledge
of network topology and dynamics in the developing and
diseased brain, as well as the brains of animal models [144].
Taken together, it is becoming important to apply omes-based
analyses to more comprehensively define anxiety spectrum
pathologies, identify the targets affected and characterize
their impact on signaling pathways, proteomes, receptoromes
and metabolomes, as well as broader connectomes and
functionality (see Table 3 for several omes-based approaches).

3. Conclusion

Current anxiety behavioral paradigms are often encumbered by
an ‘artificial’ heterogeneity stemming from single-domain and
single-gene or single-pathway models, thereby limiting the
behavioral dissection of complex phenotypes [10,12,13,79].

Table 3. Examples of omes and omes-based approaches (see [195] for details) for integrating biological

information potentially relevant to modeling anxiety and anxiolytic drug discovery.

Ome Definition Potential applications to anxiety research

Connectome The neuronal connection matrix of the brain Can decipher emotionality circuits related to anxiety
Interactome A complete set of macromolecular interactions,

such as between protein and other intercellular
molecules

Can predict physiological reactions based on a change
in another state, including drug responses

Metabolome The complete set of small-molecule metabolites Can predict changes in metabolic state in response to
anxiety and/or drug treatment

Pathome An integrated molecular basis for the
pathophysiology of a phenotype subset of a
condition

Model pathogenesis, can be applied to the anxiety spectrum

Peptidome A complete set of all peptides in an organism’s
body

Altered peptide profile due to change in protein
expression/regulation, may reveal molecular pathways
related to anxiety

Physiome The quantitative description of the physiological
dynamics or functions of the intact organism

Model physiological state functions, can be applied
(as a systems biology approach) to modeling normal vs
abnormal emotionality

Proteome The entirety of proteins expressed by an organism Can reveal altered protein expression profiles, including
protein biomarkers of anxiety disorders

Receptorome The portion of the proteome encoding various
receptors

Can identify molecular targets and characterize
interactions between signaling pathways implicated
in anxiety

Regulome The whole set of regulation components in a cell Can examine regulatory effects on genetic and protein
expression profiles implicated in anxiety

Signalome The identification of all signaling components in
all messenger-mediated transduction

Can identify molecular targets and characterize
interactions between signaling pathways implicated
in anxiety

Unknome A large proportion of unnamed genes, currently
without functional information

Can reveal multiple genes with previously unknown
functions, which influence anxiety-like behavior

Experimental models for anxiolytic drug discovery in the era of omes and omics
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However, a comprehensive understanding of the neurobiologi-
cal mechanisms underlying anxiety-spectrum disorders is essen-
tial for developing new effective therapies. Here, we outlined a
domain interplay-oriented approach to modeling anxiety disor-
ders, powered with video-tracking, bioinformatics tools and
online databases to better understand the interactions and com-
plex trait interconnectivity of affective disorders.We call for fur-
ther bridging between conceptual innovations in behavioral
neurophenotyping and modern -omics approaches, as anxiety
researchers today are no longer alone face-to-face with a mouse
or a rat tested in a behavioral apparatus. While the behavioral
data obtained in this experiment can immediately undergo a
sophisticated behavioral analysis to reveal multiple additional
endpoints, the omics-based data from this experiment can be
correlated with these behavioral end points to reveal novel
associations, molecular networks and pathways within an
interdisciplinary systems biology approach (Figure 2 and 3).

4. Expert opinion

Human affective states are complex, multifaceted and poly-
genic disorders that remain poorly understood disorders [147,148].
Animal models have become invaluable to basic research of
anxiety disorders, enabling researchers to screen novel pharma-
cological compounds and study genetic and environmental
influences on the implicated neural pathways [9,10,148].

The need to maximize the data density requires improved
phenotyping strategies [11] and conceptual innovation focused
on integration of animal modeling across several different,
clinically relevant domains (Table 1) [11]. We have argued pre-
viously that the throughput and utility of animal models of
brain disorders can be markedly increased by analyzing several
domains and their interplay [12,79]. It is critical to identify and
describe multiple domains (e.g., locomotor, cognitive, affec-
tive) involved in a particular disorder in order to improve diag-
nostic criteria and preventative techniques (e.g., drug or gene
therapy) in clinical settings. Furthermore, it is important to
assess novel compounds for their efficacy in treating both

single and multiple domains, and how acute and chronic treat-
ment may resolve certain abnormal traits within one domain
while not affecting others. However, as we move toward
higher-throughput assays, caution must be taken not to trade
validity for expeditious results. Indeed, the focus on quick,
high-throughput single-domain assays in anxiety research has
complicated drug discovery, as a lack of complexity has led
to difficulties in translating preclinical findings to clinically
active drugs. Therefore, as discussed here, novel approaches
using sophisticated video-tracking combined with bioinfor-
matics tools will foster further innovations in the field of
anxiolytic drug design and discovery (Figures 1 -- 3 ).

This strategy will also enable a more comprehensive global
behavioral characterization of anxiety-related responses,
increased throughput and more thorough identification of
biological markers. Molecular genetics and bioinformatics-
based techniques, in combination with the extensive new
body of genome information (Table 2), are currently revolu-
tionizing the way in which physiological processes are
investigated [105,149-153]. Publicly available online resources
allow the researchers around the globe to rapidly evaluate
possible correlations between candidate genes and their poten-
tial contribution to a particular pathogenic phenotype
(Table 2) [151,154-155]. It is now time to more actively apply
these approaches to animal modeling of anxiety and the search
for new anxiolytic drugs (Figures 2 and 3).
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