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The zebrafish (Danio rerio) is becoming increasingly popular in the field of neurobehavioral 
research, including experimental, genetic, and pharmacological models of human brain disorders. 

While zebrafish research is rapidly expanding, its application as a translational neurobehavioral 
model is still in its relative infancy. Therefore, further investigation of new models is needed for 
targeting more domains and new, more complex brain disorders. The main aim of this paper is to 
discuss recent developments in the field of zebrafish neurobehavioral research, and to outline 
important emerging topics for further studies. 

 

The zebrafish (Danio rerio) is a promising model organism in 

neurobehavioral and biological psychiatry research. The robustness of zebrafish 
phenotypes makes this species an excellent animal for studying experimental, 

genetic, and pharmacological models of neurobehavioral disorders. As fish 

represent perhaps the dawn of the evolution of vertebrates’ emotional behavior, the 
main aim of this paper is to outline recent developments in the field of zebrafish 

neurobehavioral research, and to summarize the emerging important new topics for 

further studies in this field. Another aim of this paper is to discuss what can be 

done to further improve and promote zebrafish neurobehavioral research. 

 

Exploratory-Based Models 
 
Zebrafish behavioral assays are currently used for high-throughput 

phenotyping and testing of various psychotropic drugs (Blaser & Gerlai, 2006; 

Levin, Bencan, & Cerutti, 2007; Lopez-Patino, Yu, Cabral, & Zhdanova, 2008), 
Fig. 1. A popular method of behavioral analysis in zebrafish research is the novel 

tank test (Fig. 2a), conceptually similar to the open field test used for rodents, 

which exhibit anxiety-like behavior by staying close to the walls (thigmotaxis), but 

increase exploration as they become acclimated to the new environment (Choleris, 
Thomasb, Kavaliersa, & Prat, 2001). Similarly, exposure to a novel environment 

evokes a robust anxiety response in zebrasfish (Blaser & Gerlai, 2006), as they 

dive to the bottom (geotaxis) until they feel safe to swim in the upper regions of 
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the tank. Typical endpoints in this test include the latency to enter the top, the 

number of transitions to the top, time spent in top, top:bottom time ratio, the 
number of fear/escape-like erratic movements, as well as freezing frequency and 

duration (Cachat et al., 2009; Levin et al., 2007; Wong et al., 2009).  

Until recently, quantification of zebrafish behavior was primarily 

performed manually, making it vulnerable to human error and incorrect data 
interpretation. However, automated video-tracking technologies are becoming 

widely used to analyze animal behavior, providing a standardized unbiased 

observation of behavioral endpoints (Egan et al., 2009a). Another advantage of 
using the video-tracking approach is the ability to store, replay, and reanalyze 

videos. Finally, video-tracking tools can calculate additional behavioral endpoints 

that are not available through manual observation, such as distance traveled in 
top/bottom, velocity, meandering and angular velocity. Comparisons of data 

produced by the video-tracking system with that recorded manually show a high 

correlation between the two (Egan et al., 2009a; Gerlai, 2005), confirming the 

video-tracking approach as a reliable method of analysis in zebrafish 
neurobehavioral research. 

The light/dark box is traditionally used in rodent behavioral neuroscience, 

and is based on the innate aversion to open illuminated areas (scotophilia, 
scototaxis) (Bourin & Hascoet, 2003). Previous research has shown that while 

anxiolytic compounds can facilitate exploratory activity (i.e. increased entries and 

duration in the light part), anxiogenic drugs cause the opposite effect (Bourin & 
Hascoet, 2003). Importantly, this test is now being applied to zebrafish, in which 

they exhibit a natural preference for the dark side (Serra, Medalha, & Mattioli, 

1999) (Fig. 2b). Several different modifications exist for the fish light-dark box test 

(e.g., Blaser, Chadwick, & McGinnis, 2010; Serra et al., 1999), consistently 
demonstrating the utility of light-dark situation to model zebrafish anxiety. Our 

own observations also support this notion, showing that “more aversive” light 

behaviors in zebrafish may be modulated by anxiogenic and anxiolytic drugs, 
strikingly paralleling the mouse light-dark behaviors. 

The open field test, another apparatus traditionally used in experimental 

biopsychology in rodents (Carola, D'Olimpio, Brunamonti, Mangia, & Renzi, 

2002; Choleris et al., 2001; Koplik, Salieva, & Gorbunova, 1995; Walsh & 
Cummins, 1976), also offers a promising new area of research in zebrafish. For 

example, some studies have applied the open field test to larval models 

(Lockwood, Bjerke, Kobayashi, & Guo, 2004). The utility of the open field test for 
adult zebrafish research also seems very logical. As in mice, zebrafish exhibit a 

natural tendency to stay close to walls of the apparatus, especially the corners. As 

they habituate to the novel arena, zebrafish predictably stray into the open central 
area, showing increased exploration (Fig. 2c).  

Overall, this brief summary of zebrafish exploration-based paradigms 

leads to several important observations. First, zebrafish exploration appears to be 

driven by the same, evolutionarily conserved factors as rodent behavior, which is 
much better studied and understood. These factors include the balance between 

exploration (novelty-seeking, curiosity) and avoidance of aversive stimuli 
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Throughout 

 
Figure 1. The developing utility of zebrafish models in behavioral neuroscience research (other 
models popular in biomedical research include E. coli, C. Elegans, Drosophila, rodents, primates 

and humans).  

 
 

(thigmotaxis, scototaxis), thereby reconfirming the use of zebrafish in 

experimental and comparative biopsychology research. Finally, unlike rodent 
models, zebrafish behavior is 3-dimensional, and includes an additional vertical 

dimension (geotaxic top-bottom behavior), thereby introducing a novel aspect to 

their exploration-based phenotypes. 

 
Zebrafish habituation behavior 

 

Relevant to both exploration and emotionality, habituation is the simplest 
form of learning, and has long been used to examine animal cognitive phenotypes 

(Bolivar, 2009; Salomons, van Luijk, Reinders, Kirchhof, Arndt, & Ohl 2009). 

Habituation to novelty represents attenuation of innate behaviors, as subjects 

become accustomed to the environment (Leussis & Bolivar, 2006; Thompson & 
Spencer, 1966). Intra-session habituation reflects spatial working memory, 

whereas inter-session habituation is commonly used to assess middle- and long-

term spatial memory (Muller et al., 1994). Despite being widely studied in various 
rodents (Bolivar, 2009; File & Mabbutt, 1990; Leussis & Bolivar, 2006; Ohl, 

Roedel, Storch, Holsboer, & Landgraf, 2002; Platel & Porsolt, 1982; Thompson & 

Spencer, 1966), habituation has not been extensively evaluated in zebrafish until 
recently (Best et al., 2008; Egan et al., 2009b; Gerlai, 2003; Goldsmith, 2004; 

Leimer et al., 1999; Shin & Fishman, 2002; Zon & Peterson, 2005).  
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a) 

 
b) 

 
c) 

 
 
Figure 2. Experimental paradigms to study zebrafish behavior. a) The novel tank test examines 
novelty-evoked anxiety. When a zebrafish is exposed to a novel (potentially dangerous) environment, 
it initially dives to the bottom, and then gradually explores the top. Inhibited exploration, reduced 
speed, and increased frequency of escape-like erratic behaviors are usually associated with higher 
levels of anxiety elicited by different stressors. b) Normal light-dark preference in adult zebrafish (n 
= 15) tested in a 6-min light-dark box test (data obtained from manual registration of video-recorded 

behaviors). c) Open field thigmotaxic behavior in representative adult zebrafish tested for 30 min (top 
view; behavioral traces are generated using Noldus Ethovision XT7 video-tracking software). 
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Until recently, fish behavior was generally assumed to be instinctively-

driven, with little cognitive ability (rev. in Burt de Perera, 2004). However, it is 
currently known that fish are capable of forming spatial memories and cognitive 

maps (Burt de Perera, 2004; Riedel, 1998), providing an opportunity to explore 

their habituation behaviors in depth. Several recent studies suggest that zebrafish 

can habituate to various stimuli, including conditioned place preference (Kily et 
al., 2008; Ninkovic & Bally-Cuif, 2006), light/dark locomotion (MacPhail et al., 

2009) and startle reflex (Eddins, Cerutti, Williams, Linney, & Levin, 2009; Levin 

et al., 2009) testing. 
Experiments undertaken in our laboratory have comprehensively 

characterized zebrafish habituation to novelty (Wong et al., 2009). Using short 6-

min novel tank trials, we found significant increases in exploratory behavior and 
decreases in freezing behavior over time. We have found that during 30-min intra-

session habituation trials, the zebrafish exhibited a steady increase over time in 

transitions to the top of the novel tank, time spent in the top, as well as a marked 

decrease in freezing scores, but not in erratic movements (Wong et al., 2009). 
Finally, by analyzing inter-session habituation (Fig. 3), with each successive day, 

we found significantly increased transitions to the top, a similar trend for time 

spent there, as well as reduced freezing behaviors. Collectively, these findings 
confirm robust habituation phenotypes in zebrafish (similar to that observed in 

various rodent models) and emphasize the utility of zebrafish to study both 

cognitive and emotional behaviors. 
 

Other behavioral models 

 

Fostering high-throughput translational paradigms in zebrafish, one area 
that is rapidly developing is the neurobiology of the acoustic startle reflex (ASR). 

In humans, ASR assesses hearing sensitivity as well as the intact activity of 

multiple neuronal circuits (Musiek, 2003). The startle response is evolutionarily 
advantageous (because it provides a form of protection from dangers in the natural 

habitat), and its endpoints are thought to reflect sensitization, habituation, and pre-

pulse inhibition (PPI) (Koch, 1999). In humans, lowered PPI has been reported in 

patients with neurological damage, schizophrenia or Huntington’s disease (Musiek, 
2003). For example, Burgess and Granato (Burgess & Granato, 2007) have shown 

that PPI does modulate ASR in zebrafish just as in higher vertebrate, such as mice, 

also reporting that reduced PPI (modulated by dopamine agonists) can be 
counteracted by antipsychotic drugs (Rigdon & Weatherspoon, 1992).  

Olfaction plays a key role in zebrafish behavioral responses. In line with 

this, recent studies (Braubach, Wood, Gadbois, Fine, & Croll, 2009) have 
characterized zebrafish olfactory behaviors and their modifications through 

learning. Exposing zebrafish to L-alanine and L-valine (two amino acids that 

induce appetitive behavior), the researchers measured zebrafish appetitive behavior 

by counting >90º turns in a circular flow-through tank. These experiments paired 
the amino acids (unconditioned stimulus) with the conditioned stimulus 
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(phenylethyl alcohol), thereby eliciting a conditioned response to a neutral 

stimulus by pairing it with an olfactory cue (Braubach et al., 2009). 
 

 
 

 
Figure 3. Habituation responses in zebrafish tested daily in the 6-min novel tank for 7 days (n =23), 
adapted from (Wong et al., 2009); *p < 0.05, **p < 0.01, *** p < 0.005, #p = 0.05-0.1, trend (U-test 

with Bonferroni correction, where applicable, vs. Day 1 of the test) for significant ANOVA data). 
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Finally, social behaviors are commonly seen in zebrafish, raising the 

possibility of modeling social behavior in these animals. In rodents, social defeat 
stress has been shown to induce anxiety and depression in the “loser” animals 

(Becker, Zeau, Rivat, Blugeot, Hamon, & Benoliel, 2008; Koolhaas, De Boer, De 

Rutter, Meerlo, & Sgoifo, 1997). While most research in social defeat has been 

focused on higher organisms (Bjorkqvist, 2001; Koolhaas et al., 1997), zebrafish 
are also capable of establishing dominant-subordinate relationships and exhibiting 

agonistic behavior (Larson, O’Malley, & Melloni, 2006), opening an interesting 

new avenue for further study. For example, it may be possible that with repeated 
aggression (induced through many ongoing social defeat trials), some fish would 

emerge as persistent “losers”, leading to chronic social defeat similar to that 

observed in rodents. 
 

Current Approaches and Methodological Considerations 

 

 Larval vs. adult zebrafish research  
 

 Larval zebrafish have emerged as a popular model for a number of brain 

pathologies. Larvae display learning, sleep, drug addiction, and other quantifiable 
neurobehavioral phenotypes (Best & Alderton, 2008). Another advantage of using 

zebrafish larva is the ability to study multiple animals simultaneously within a 

high-throughput battery (Best & Alderton, 2008; Best et al., 2008; Creton, 2009). 
However, such models have some limitations, since they do not exhibit the rich 

behavior of the adult animals (e.g., Creton, 2009, Fig. 1). Also, larval models have 

somewhat limited developmental applications, for example, lacking fully 

established mediatory and endocrine systems (Kimmel, Ballard, Kimmel, Ullmann, 
& Schilling, 1995), as well as some neural circuits and projections (Kastenhuber, 

Kratochwil, Ryu, Schweitzer, & Driever, 2010). Likewise, behavioral endpoints 

observed in larval animals may not be fully translated (or have good homology) to 
adult subjects’ behavior. Thus, larval research is unable to fully replace the adult 

zebrafish studies. This notion is important, since zebrafish neuroscientists 

sometimes remind us of Montekki and Capuletti in the larval vs. adult zebrafish 

dilemma. Although testing multiple adult fish simultaneously may be an interim 
solution, a better strategy may be to accept both approaches and use them 

complementarily to advance zebrafish research. 

 

 Thinking outside the brain: endocrine responses to stress in zebrafish 

 
 Thinking outside of the traditional “box” is important in experimental 
modeling of brain disorders (Kalueff, LaPorte, Murphy, & Sufka, 2008; Kalueff, 

Wheaton, & Murphy, 2007). Here we argue that focusing on bodily processes, in 

addition to pure brain mechanisms, may be a fruitful direction of zebrafish 

biobehabioral research. The hypothalamic-pituitary-adrenal (HPA) axis mediates 
the endocrine response to stress in humans and mammals (Alsop & Vijayan, 

2008). Under stress, the paraventricular nucleus of the hypothalamus produces 
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corticotropin releasing factor (CRF), which is delivered to the anterior pituitary 

gland via the hypothalamic-hypophysial portal blood vessel system (Suzuki, 
Kawasaki, Ohnishi, Nakamura, & Ueta, 2009). CRF stimulates the anterior 

pituitary gland, causing release of andrenocorticotropic hormone (ACTH) into the 

blood stream (Tsigos & Chrousos, 2002). When stimulated by ACTH, the adrenal 

cortex synthesizes glucocorticoid hormones that modulate the stress reaction 
(Dedovic, Duchesne, Andrews, Engert, & Pruessner, 2009; Pruessner et al., 2010).  

  

 

 
 

 

Figure 4. Zebrafish endocrine responses (whole-body cortisol, ng/g fish) to withdrawal from 
diazepam and ethanol. Left to right then down: 72-h withdrawal from chronic diazepam (72 µg/mL, 2 
weeks); 12-h withdrawal from chronic ethanol (0.3%, 1 week); chronic ethanol exposure (0.3%, 1 
week) and 12-h withdrawal from chronic ethanol (0.3%, 1 week). Data are presented as mean ± SEM 
(*p < 0.05, **p < 0.01, #p = 0.05-0.1, trend, U-test). 

 

 

A similar evolutionarily conserved mechanism has been found in zebrafish 
(To et al., 2007), whose hypothalamus-pituitary-interrenal (HPI) axis is 

homologous to the HPA axis. With cortisol as the main mediator of the 

physiological response to stress (Winberg, Nilsson, Hylland, Soderstom, & 
Nilsson, 1997), zebrafish may be an excellent model for endocrine research 

(Winberg et al., 1997). Figure 4 summarizes recent data generated by our lab from 

a series of experiments evoking strong anxiety in zebrafish. The consistency of 
increased whole-body cortisol concentrations following stressful stimuli is in line 

with behavioral data gathered in these and previous studies (Egan et al., 2009a). 
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Such ability to parallel physiological responses with behavioral phenotypes 

provides researchers with an important tool for investigating stress-related 
phenomena. 

 

Neurodegenerative disorders 
 
The two key endophenotypes of Alzheimer’s disease (AD) include a 

buildup of amyloid-beta plaques in the nervous system, and a parallel production 

of uncoordinated meshwork of neurofibrillary tangles caused by damaged Tau 
protein (Best & Alderton, 2008; Paquet et al., 2009). As suggested, these neuronal 

damages can lead to memory impairment, and have specifically been noted in 50% 

of patients with dementia (Vandenberghe & Tournoy, 2005). Therefore, it is 
possible that learning and memory acquisition in zebrafish can be effectively 

modeled based on amyloid-beta plaques and tangled neuron formation.  

Paradigms which use ASR, raised platform, or T-maze arenas can assess 

learning and memory capabilities in fish (Best & Alderton, 2008), including 
tauopathic zebrafish (Barut & Zon, 2000; Paquet et al., 2009) highly relevant to 

AD. Likewise, Parkinson’s disease (PD), the most common movement disorder in 

humans, is also well-studied in zebrafish (Paquet, Schmid, & Haass, 2006; 
Shankaran, Schmid, & Kahle, 2006). In addition, various PD-inducing drugs have 

also been evaluated in both larval and adult zebrafish (e.g., Guo, 2009).  

 

Addiction 

 

Recent analyses of gene expression
 
changes following acute or chronic 

exposure to drugs
 
of abuse (Kily et al., 2008), have established the genetic 

correlates of addiction. For example, chronic treatment of zebrafish with ethanol 

and nicotine alters the expression of multiple CNS genes, some of which have been 

identified as components of the addiction pathways in mammals (Kily et al., 2008). 
Further evidence also suggests the sensitivity of zebrafish to drug withdrawal, 

which is the cornerstone of addictive behavior (Cachat et al., 2009).  

For instance, ethanol discontinuation disrupts zebrafish shoaling behavior 

(Gerlai, Chatterjee, Pereira, Sawashima, & Krishnannair, 2009), while cocaine 
withdrawal evokes marked alterations in their locomotion (Lopez-Patino et al., 

2008; Lopez Patino, Yu, Yamamoto, & Zhdanova, 2008). Our laboratory has 

demonstrated that withdrawal also modulates zebrafish cortisol levels (Fig. 4), 
implicating their cortisol abnormalities as a phenotype (Cachat et al., 2009) 

consistent with glucocorticoid dysregulations in human and rodent withdrawal 

syndrome (Borlikova, Le Merrer, & Stephens, 2006; Keedwell, Poon, 
Papadopoulos, Marshall, & Checkley, 2001; Lovallo, 2006; Rabbani, Hajhashemi, 

& Mesripour, 2009). 
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New Potential Applications of Zebrafish Models 

 

 Serotonin syndrome 

 

As the clinical use of selective serotonin reuptake inhibitors (SSRIs) is 

rapidly increasing, their toxicity also becomes a serious biomedical problem. 
Serotonin syndrome (SS) is a severe adverse drug interaction characterized by 

altered mental status, autonomic dysfunction, and neuromuscular abnormalities. SS 

symptoms can include agitation, delirium, coma, mydriasis, diaphoresis, 
hyperthermia, tachycardia, fluctuating blood pressure, tremors, rigidity, 

myoclonus, and seizures. Although mild cases of the condition usually resolve 

within 24-72 h (Martin, 1996), SS is particularly difficult to diagnose, and may 
have a rapid development (Boyer & Shannon, 2005). While SS has been 

previously modeled in rodents (Fox, Jensen, Gallagher, & Murphy, 2007; Gingrich 

& Hen, 2001; Kalueff, Fox, Gallagher, & Murphy, 2007), this condition has not 

been assessed in zebrafish, although they also have a well-developed serotonergic 
system.  

Here we suggest that when attempting to model SS in zebrafish, we may 

need to select behavioral (e.g., anxiety, immobility) endpoints, and focus on the 
toxic effects of a combination of several serotornergic drugs (since a single drug 

may not reliably and effectively induce SS). For instance, a monoamine oxidase A 

inhibitor administered in conjunction with an SSRI can be expected to induce SS-
like states in zebrafish, similar to the SS-like states that the two drugs would evoke 

in mice or humans. Agents that can be expected to achieve this result include 

fluoxetine, tranylcypromine, olanzapine or clomipramine. In parallel to behavioral 

abnormalities, endocrine and/or neurochemical (e.g., brain serotonin levels) 
endophenotypes can be assessed to more fully mimic fish SS-like behaviors. 

  

Depression 
 

Though attempts to model depression in zebrafish have so far been non-

existent, some attempts have been made to model bipolar depression in mice. One 

such model is based on administration of one drug followed by another drug 
causing the opposing behavioral effects. For example, a single administration of 

psychostimulants such as amphetamine or methamphetamine causes hyperactivity, 

which is then used to test the efficacy of anti-manic treatments such as lithium and 
valproate. Furthermore, behavioral sensitization by repeated administration of 

psychostimulants such as amphetamine, methamphetamine, and cocaine has also 

been used as a model of bipolar disorder in mice (Kato, Kubota, & Kasahara, 
2007). Since repeated exposure to cocaine can induce an oscillation or cycling in a 

variety of neurochemical and physiological systems (Antelman et al., 1998), we 

suggest that it may also be possible to evoke ”bipolar” behavior in zebrafish, for 

example, by using a combination of cocaine and anti-psychotic agents. 
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LPS response and sickness behavior 

 
 Cytokine-mediated sickness behavior is an animal syndrome that includes 

decreased locomotor activity, inhibited exploration of their physical and social 

environment, reduced food and water intake, and impaired learning and memory 

(Dantzer, 2001). Notably, zebrafish possess a wide array of cytokines, similar to 
humans and mice (Lieschke, 2001). Drawing on already established knowledge 

that bacterial lipopolysaccharide (LPS) is capable of inducing sickness behavior in 

zebrafish via the induction of pro-inflammatory cytokines (Henry et al., 2008), 
LPS exposure may possibly serve as a model for sickness behavior in zebrafish. 

The inflammatory response is initiated by the uptake of bacteria and their 

products by the cells of the innate immune system, which, in turn, continues with 
various mechanisms, including the elevation of cytokines and/or chemokines such 

as TNF-α, IL-1, IL-6, and IL-8 (Decker, 2004). While affective pathogenesis is 

attributed to various exogenous stressors (Nemeroff, 2007; Nutt, 2000), recent 

studies have directly linked affective disorders with various cytokines (Asberg et 
al., 2009; Hoge, Brandstetter, Moshier, Pollack, Wong, & Simon, 2009; Jonsdottir, 

Hagg, Glise, & Ekman, 2009; Lu, Jensen, Huang, Kealey, Blair,& Whitehead, 

2009). Therefore, the induction of a cytokine response via LPS in zebrafish may 
produce a promising model of cytokine-mediated behavioral syndromes. 

 

Schizophrenia and autism 
 

Traditional methods of modeling schizophrenia in animals involve 

dopamine agonist-mediated hyperactivity, and measuring the responses to 

antipsychotic dopaminergic antagonists, including the elevated levels of dopamine 
metabolites, dihyroxyphenylacetic acid, and homovanilic acid (found in the 

cerebral spinal fluid and urine of human patients). We suggest the utilization of the 

same antipsychotic drugs administered to rodents (such as haloperidol, clozapine, 
risperidone, and olanzapine), could produce similar behavioral responses in 

zebrafish. Clearly, more models of schizophrenia in zebrafish are needed. The only 

current model to date was developed through Burgess and Granato’s successful use 

of sensory gating, in which it was demonstrated that antipsychotic drugs can 
suppress disruptions in zebrafish PPI induced by dopamine agonists (Burgess & 

Granato, 2007).  

Many of behavioral abnormalities associated with autism spectrum 
disorders (ASDs) are inherently difficult to model in animals. However, previous 

experimentation suggests that it is possible to model defects in social interaction in 

zebrafish, as well as the developmental and cellular defects that correspond to such 
symptomology. For instance, zebrafish homologues of the genes implicated in 

ASDs (such as neurexins, reelin, mecp2, and met) have been identified, and assays 

that measure social interaction have been developed (Colman, Baldwin, Johnson, 

& Scholz, 2009). Thus, like mice, but empowered by the ease of genetic 
manipulations, zebrafish may lead to new experimental and genetic models 

relevant to ASD. 
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Conclusions 
 
 With an organism as promising as the zebrafish, it is imperative to develop 

new models and to refine and expand upon current models in order to reflect this 

species’ full potential. In addition to establishing new models and paradigms, 

adding new behavioral endpoints and using novel observation methods, such as 
automated video-tracking systems, will bolster the utility of zebrafish in 

neurobehavioral research. Using biomolecular markers (such as gene expression or 

endocrine measures) to parallel zebrafish physiology with behavioral data is 
another important direction of research. Finally, expanding the area of zebrafish 

research by including cross-domain modeling (e.g., drug withdrawal/anxiety), new 

disorders (e.g., ASD, schizophrenia), and new pathways (e.g., brain genes, central 
and peripheral cytokines) may lead to new translational models using both larval 

and adult zebrafish. 
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