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bstract

Genetic and environmental factors play a key role in psychiatric disorders. While some disorders display exceptionally high heritability, others
how gene × experience × personality interactions, contributing complexity to psychiatric phenotypes. As some brain disorders frequently overlap
nd co-occur (representing a continuum or spectrum of phenomena), modern psychiatry is shifting from “artificial” heterogeneity to the recognition
f common elements in the pathogenesis of emotional, personality and behavioral disorders. Genetic animal models of these disorders represent
n important direction of research, and are widely used to explore the role of different genes in brain mechanisms. Several concepts (such as

ndophenotypes, gene × environment interactions, and cross-species trait genetics) have been suggested for animal experimentation in this field.
ere we develop a new concept based on targeting the complex interplay between different behavioral domains, meant to foster high-throughput
henotyping and integrative modeling of psychiatric disorders.
ublished by Elsevier B.V.
eywords: Genetic animal models; Brain disorders; Behavioral/psychiatric phenotypes; Domain interplay; Comorbidity; Gene × environment interaction; Mutant
nd transgenic animals
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. Introduction

Animal experimental models of brain disorders represent
valuable tool in refining the existing, and developing new,

Several currently accepted concepts of behavioral pheno-
typing are summarized in Fig. 1A. Some of them focus
on direct effects of individual genes, their networks and
gene × environment (G × E) interactions in the regulation of
europsychiatric theories [1,16,33–35,39,40]. Various genetic
nimal models, based on selectively bred, hybrid, gene-targeted
r transgenic animals, are widely used for screening psy-
hotropic drugs, testing neurobiological hypotheses and finding
andidate genes for human brain disorders [9,15,38,41,71].
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nimal and human behaviors [12–14,30,48,53,65]. Endophe-
otyping approach seeks to use relatively simple “symptoms”
r biological phenomena as markers for complex behaviors
syndromes) [27,28,32,66,73]. Recently, Kas et al. [47] devel-
ped an interesting concept of “cross-species trait genetics”

vs. complex syndrome genetics) to clarify genotype–phenotype
elationships and foster translation of animal behaviors into
odels for human psychiatric disorders (Fig. 1A). However,

ecent paradigm shifts in modern psychiatry, refocusing from
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Fig. 1. Domain interplay strategy for neurophenotyping research. (A) Current strategies in genetic modeling of a complex human psychiatric disorder (indicated as
large black-rimmed circles) in experimental models using different species. Individual domains are presented as small circles within a complex disorder. Domain
interplay approach focused on linking interplaying domains into a system (marked with bold arrows; also in panel B), then consistently modeling this system across
different species (yellow plane). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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ndividual ‘specific’ diagnoses to a more integral continuum
2,6,8,18,50] with common genetic and environmental determi-
ants [37,38,45], require additional phenotyping approaches to
ore completely evaluate newly appreciated disorder overlaps

46].
To further optimize genetic animal modeling of neuropsychi-

tric disorders, here we develop a domain interplay concept that
s based on analyses of clusters of behavioral endophenotypes
r domains, as well as on their interplay and dynamics (rather
han simply focusing on specific individual behaviors, genes or
omains of interest; see further). The present concept is different
rom all previously known phenotyping theories, as it empha-
izes the importance of assessing systems of domains as a highly
alid strategy to unravel complex neuropsychiatric phenotypes.
ffering a principally new phenotyping strategy (Fig. 1A and
), and being consistent with recent integrative trends in clin-

cal psychiatry, this concept is expected to further stimulate
he development of genetic animal models and improve their
ranslation into neuropsychiatric/behavioral disorders.

. Problems with animal models

Specialists in the field of biological psychiatry know that
nimal models of brain disorders are not easy to develop and
erhaps even more difficult to interpret [9,15,46,71]. Since
xperimental models often fail to reproduce complex multi-
yndromal human disorders, one solution may come from an
n-depth focus on analogous phenotypes, functional polymor-
hisms and conserved gene functions [47]. However, despite the
act that such analogies would indeed strengthen face validity
f an animal model, real brain disorders do not necessarily have
hese analogies. Indeed, not all candidate genes show functional
olymorphisms, or have functional analogs in men and mice
e.g. [29]). Moreover, behavioral and physiological phenotypes
cross different species may sometimes lack overt analogies, or
how false similarity, with mimicking (at a phenocopy level)
s. modeling a “true” psychiatric state. For example, rodent tail
uspension or forced swim behaviors are not simple analogues
o human depression [57,69], whereas temperature responses
o some serotonergic agents are opposite in direction in rats
s. mice [42]. Unlike humans, most animals are macrosmatic,
nd the role of olfactory stimuli in their behavioral models is
y far more important [43,52]. Collectively, these inter-species
ifferences yield conflicting behavioral, neurogenetic or phar-
acological results, and seem to complicate markedly their

ranslation into human phenotypes.
Species differences in the complexity of CNS or cognitive

nvolvement in behavior further complicate potential transla-
ion of human symptoms into animal tests based on analogous
henotypes [37,45]. Moreover, as some neuropsychiatric disor-
ers are characterized by complex G × E interactions [12,14,65],
ross-species analysis of environmental inputs (which may also
iffer across species) is needed in order to more fully assess trait

enetics in animal models. Other related problems with genetic
odeling are species-specific differences in behavior, epigenetic

actors and inter-individual variability, as well as ontogeny of
rain disorders (sometimes limited to specific stages of brain

t
c

F

Research 188 (2008) 243–249 245

evelopment, whose timing may also differ across species); see
efs. [15,46,71] for discussion.

Finally, behavioral phenotyping may have problems with
orrect dissection of disorder-specific domains vs. comorbid-
ty. For example, mild forms of anxiety and depression are
linically similar, commonly co-occur, and most likely share
ommon neurobiological mechanisms and genetic determinants
see Ref. [45] for detailed review). Likewise, addiction and
rug abuse are commonly comorbid with human depression
nd anxiety, also sharing some common genetic determinants
19,20,24,25,54,55]. Obsessive-compulsive disorder (OCD)
nd OCD spectrum disorders (OCSD) are characterized by
umerous anxiety-related phenotypes, cognitive and behavioral
nhibition deficits, and frequent comorbidity with depression,
ddiction and other psychiatric disorders [4,5,22,23]; Fig. 2.
aken together, these data raise the possibility that a combination
f several distinct but interacting domains may be mistaken for
clinical (endo)phenotype of interest. While a similar problem
ay also occur in animal modeling using traditional phenotyp-

ng approaches (Fig. 1B), a closer in-depth analysis of different
omains and their interplay may be needed for further clinically
elevant genetic experimental modeling of neuropsychiatric dis-
rders.

. Domain interplay: the concept and selected examples

Why is domain interplay important? Consider, for example,
nxiety and autism—two complex multifaceted psychi-
tric disorders, dramatically affecting human populations
21,26,58,60,62,67,68,72]. Their high comorbidity, common
enetic determinants and some clinical manifestations, as well
s partial effectiveness of serotonin reuptake inhibitors and some
nxiolytics to treat both disorders, raise the possibility that these
wo disorders may overlap in the “social interaction” domain
10,11,17,58] (Fig. 1B). However, this also implies that sim-
ly mimicking social deficits alone and across species may not
llow a reliable dissection of experimental anxiety and autism.
n contrast, the use of several domains makes these efforts
ore specific. For example, genetic models focusing on social

nteraction deficits accompanied by global behavioral inhibition
nd reduced exploration and/or increased emotionality (anxiety
omain) may be relevant to generalized anxiety pathogenesis
Fig. 1B). In contrast, animals with both social deficits and anx-
ety are most likely relevant to social anxiety disorder. Models
howing both emotionality and OCD-like behavioral persevera-
ions (but normal social ability) seem to target OCDS, whereas
nimals with impaired social behavior and increased behavioral
erseverations may be more relevant to autism [10,17,26,58]
also see Figs. 1B and 2 for graphic illustrations). In a similar
ein, mimicking an anxiety-depression pathogenetic continuum
n animal genetic models (in addition to focusing on the two dis-
rders as static “points”, as do most of the existing behavioral
odels) may be a key strategy to better our understanding of
hese serious stress-evoked disorders [46], whose overlap and
omorbidity have already been mentioned.

Can we improve our present neurophenotyping strategies?
ig. 1A summarizes the domain interplay concept developed
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ig. 2. Examples of behavioral domains interplay in different genetic models o
olor; ↑ activation; ↓ inhibition). Interplaying domains (to be modeled in anim
nterplaying domains will have higher construct validity. OCD, obsessive-comp

ere. Briefly, it postulates that if a human disorder A leads
o disorder B, co-occurs with it, increases its risks or wors-
ns pathogenesis and treatment outcome, then we need not
nly to develop genetic models that mimic disorders A and
, but also to search specifically for those models where A-

ike phenotype will exacerbate B-like phenotype, or increase the
robability of the occurrence of B. This approach may also be
ell-combined with above-mentioned cross-species trait genet-

cs approach [47], as interplay between two domains (or traits)
cross different species (Fig. 1A) will most likely reflect a core
eature of pathogenesis, and therefore, further strengthen the
onstruct validity of the model in question.

Importantly, by “interplay” between different domains we
hould also understand possible negative interrelationships. For
xample, if domain A precludes (or minimizes risks of) domain
, we need to develop animal genetic models that will reflect

his phenomenon (e.g., mutant mice with A-like behavior will
e less prone to display C-like behaviors, and vise versa).
Finally, since construct validity is the main quality of ani-
al models of brain disorders, domain interplay approach that
imics pathogenetic processes in detail, would lead to improved

onstruct validity of models in question. While parallel assess-

s
r
s
b

n disorders (core disordered domains, based on clinical data, are marked with
dels) are interconnected. Experimental models that simultaneously target more

disorder.

ent of several domains has long been recognized in behavioral
henotyping of genetically modified animals, it is becoming cru-
ial to have genetic models that would focus specifically on
verlapping domains (viewing them as a pathogenetic process,
r “system”; Fig. 1A and B), and parallels this overlap to human
linical data.

Fig. 2 summarizes disordered domains and their interplay in
ifferent behavioral models of several common neuropsychiatric
isorders, representing targets for domain interplay-oriented
henotyping research. Animal models that mimic interplay of
hese disordered domains in a way presented in Figs. 1 and 2 will
ave higher construct validity and clinical relevance, strength-
ning the utility of our approach in phenotyping of genetically
odified animals and translating animal behaviors into models

f human psychiatric disorders. Several further examples may
llustrate the developing utility of domain interplay-oriented
henotyping research.

Numerous clinical and animal studies have implicated

erotonin, serotonin transporter (SERT) and brain-derived neu-
otrophic factor (BDNF) in brain pathogenesis. Serotonergic
ystem and BDNF not only exert their modulatory effects on
ehavior, but also interact at genetic and molecular levels in the
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Fig. 3. Genetic and environmental determinants of neuropsychiatric disorders:
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egulation of normal brain mechanisms and neuropsychiatric
henotypes [56,63,64,70]. Human variants at both the SERT
nd BDNF gene loci have been implicated in affective disor-
ers, OCD and polysubstance abuse liability [31,36,59,61,67],
trengthening the importance of studying interactions between
hese genes using animal experimental models. Consider
omain-oriented research of obesity in SERT−/− or BDNF+/−
ice. While an assessment of body weight phenotype alone will

ot clarify potential mechanisms of their obesity, a focus on its
elation to other domains (e.g., food intake in BDNF+/− mice
51] or hypoactivity in SERT−/− mice [39]) may be useful,
uggesting that obesity is most likely pathogenetically linked to
vereating in BDNF mice and hypoactivity in SERT−/− mice.
ecent studies have further confirmed the importance of anal-
sis of interplay between obesity and other domains, such as
nxiety, aggression and depression [49]. Indeed, patients with
ating disorders often manifest associated anxious and aggres-
ive symptoms, while dietary restriction (that increased levels of
erotonin in the frontal cortex of BDNF+/− mice) reduced their
besity, anxiety and aggression [49]. These findings support the
nterplay between obesity and other domains, suggesting that
urther genetic models targeting this interplay may be necessary
o better understand related complex human clinical phenotypes.

In addition to single gene mutant models, an important area
f research in biological psychiatry is the use of double mutant
odels, such as SERT−/− × BDNF+/− mice. For example,

ouble SERT−/− × BDNF+/− mutant mouse data show that
educed BDNF availability during development exaggerates the
onsequences of absent SERT function, leading to higher obe-
ity and anxiety [59,64]. These double-mutant mice also have
reater stress-induced increases in plasma adrenocorticotropic
ormone, more aberrant neuronal morphology [64] and poorer
erformance in radial maze (own unpublished data), compared
ith single-mutant mice. Such complexity of (endo)phenotypes
ffers excellent opportunities for modeling interplay between
ultiple, clinically relevant affected domains.
Likewise, the role of cognitive factors in psychiatric disorders

as long been recognized in clinical literature, as they not only
ccompany brain disorders but also represent a key pathogenetic
actor per se [37,45]. Over the last years, a number of genes have
een implicated in cognitive functions [66,67]. Therefore, cog-
itive domains and their interplay with non-cognitive domains
arrant further scrutiny in genetic animal models of neuropsy-

hiatric disorders. The importance of in-depth assessment of
omain interplay has been recently emphasized using a model
ituation with only two interplaying domains (memory and anx-
ety or depression) that may lead to multiple alternative states,

isinterpretations of which in different tests would generally be
navoidable if only single domains (rather than their interplay)
ere assessed [44].

. Concluding remarks
In general, assessment of inter-linked domains in different
enetic and behavioral animal models may complement the
xisting phenotyping concepts (Fig. 1A), and further advance
ur understanding of psychiatric pathogenesis. As a new phe-

“
l
g
a

model based on two overlapping and comorbid disorders A and B, and five
roups of candidate genes potentially involved in their pathogenesis.

otyping strategy, domain interplay approach has several clear
dvantages for genetic modeling of brain disorders. First, assess-
ent of several distinct domains (and their interplay) minimizes

he risk of incorrect interpretations of animal behaviors in differ-
nt genetic models, which is more likely if domains are assessed
r mimicked separately.

Second, a focus on clinically relevant “interplay” aspects
f pathogenesis fosters further innovation in animal integrative
xperimental modeling (based on spectrum-oriented psychiatric
heories is modern psychiatry [3,7,18,50]), whose need has
een recognized in biomedical research [46]. Third, a focus
n dynamic interplay between different domains (in addition
o studying individual domains) betters our understanding of
athogenesis of complex brain disorders, their comorbidity,
ommon mechanisms and risk factors. Fourth, this strategy can
elp predict how altered specific domain(s) may influence other
omains in different genetic models, including those not yet
ully explored.

Given high comorbidity of psychiatric disorders, our
pproach may also have an additional “practical” advantage in
ases when symptoms are unclear or poorly understood. Indeed,
nstead of mimicking individual symptoms (whose proper dis-
ection is complicated by comorbidity or poor diagnostic
riteria), researchers may target their pathogenic interplay, lead-
ng to models with good face and construct validity (reflecting
real clinical picture of pathogenesis rather than focusing on

nclear details).
Finally, as shown in Fig. 3, modeling brain disorders as

ystems of interplaying domains, not only allows investigators
o search for specific candidate genes responsible for individ-
al disorders A or B (which is presently the most common
ask of psychiatric genetics research), but also to pursue even

ore far-reaching goals. For example, this approach may help
etect genes responsible specifically for comorbidity of these
isorders, and also those genes which determine the direction
f pathogenesis (i.e., A->B or B->A types of pathogenesis).
nderstanding that in addition to genetic risk factors of indi-
idual brain disorders, there may be specific “comorbidity”
enes and “pathogenetic vector” genes (specifically responsible
or disorders’ overlap) as well as specific “domain” genes and
domain interplay” genes, may help clarify further the genetic

inkage data which often yield conflicting results in traditional
ene/domain or gene/disorder-oriented studies. Thus, genetic
nimal models based on targeting different domains and their
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nterplay can increase our understanding of neural and genetic
nderpinnings of complex human psychiatric disorders.
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