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Interaction of anxiety and memory represents an essential feature of CNS functioning. This paper reviews experimental data
coming from neurogenetics, neurochemistry, and behavioral pharmacology (as well as parallel clinical findings) reflecting different
mechanisms of memory-anxiety interplay, including brain neurochemistry, circuitry, pharmacology, neuroplasticity, genes, and
gene-environment interactions. It emphasizes the complexity and nonlinearity of such interplay, illustrated by a survey of anxiety
and learning/memory phenotypes in various genetically modified mouse models that exhibit either synergistic or reciprocal effects
of the mutation on anxiety levels and memory performance. The paper also assesses the putative role of different neurotransmitter
systems and neuropeptides in the regulation of memory processes and anxiety, and discusses the role of neural plasticity in these
mechanisms.
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1. INTRODUCTION

Pathologic anxiety is a complex stress-related disorder which
includes generalized anxiety, panic, social anxiety, agorapho-
bia, posttraumatic stress, and obsessive-compulsive disorders
[1–5]. There are many animal (experimental) paradigms that
model different subtypes of human anxiety [6–10]. In addi-
tion to anxiety, stress has long been known to affect animal
and human cognitions [11–14], raising the possibility that
memory and anxiety interact.

Numerous studies have outlined behavioral, physiologi-
cal, pharmacological, and genetic aspects of memory-anxiety
interaction [13, 15–20]. Since memory consolidation and
anxiety both require brain arousal, it has been considered
as promnestic and anxiogenic, whereas brain inhibition is
amnestic and anxiolytic; review [12, 21, 22]. However, classic
works of Yerkes and Dodson [14], as well as many subsequent
studies [23–30], have shown that memory and stress inter-
play in a more complex, type-specific, and nonlinear manner.
Here we will analyze the available clinical and experimental
data in order to examine (with a particular focus on neuro-
genetics) the links between anxiety and memory functions.

Transgenic and mutant animals, including tissue-specific
and inducible knockout mice, represent a valuable tool for
biomedical brain research [31–34] powered by extensive
on-line databases [8, 9]. Table 1 summarizes anxiety and
memory/learning phenotypes in various genetically modi-

fied mouse models, including mutant mice lacking or over-
expressing receptors of various neuromediators, neuropep-
tides, and some brain proteins mediating neuroplasticity.
Several important conclusions can be made based on these
findings. A common situation when the same mutation leads
to altered anxiety and memory phenotypes (Table 1) con-
firms overlapping of the two domains at genetic (in addition
to behavioral and pharmacological [12, 13]) levels. While
many mutants show synergetic alterations of memory and
anxiety, there are also data on reciprocal effects of some mu-
tations (Table 1), confirming a complex nonlinear nature of
memory-anxiety interplay. Moreover, as can be seen in this
table, different subtypes of memory seem to be differen-
tially influenced by altered anxiety, further contributing to
the complexity of the problem discussed here. While this pa-
per will not offer a simple solution for complex animal or
human phenotypes, its aim is to discuss how different brain
systems may interact in determining anxiety and memory
phenotypes.

2. NEUROCHEMISTRY AND NEUROGENETICS
OF MEMORY AND ANXIETY

Cholinergic synaptic transmission has long been implicated
in learning, memory, and anxiety [36, 92]. Neuronal nico-
tinic (N) acetylcholine (ACh) receptors are hetero-oligomers
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Table 1: Mouse mutagenesis data on memory and anxiety phenotypes [8]; see text for details. KO: knockout (−/−), HZ: heterozygous (+/−)
mice. (↑: increased, ↓: reduced, 0: no effects, ↔: mixed or unclear results. CRF: corticotropin-releasing factor, MAO: monoamine oxidase
A/B, FXR1: fragile X-related protein 1, PACAP: pituitary adenylate cyclase activating polypeptide, Rab3a: ras-associated binding 3a protein.)

Mouse models
Effects on

References
Anxiety Memory/learning

Neurotransmitters
Acetylcholine

N-receptor α4 subunit KO mice ↑ ↓ within-trial habituation [35]

N-receptor α7 subunit KO mice 0 (↓) 0 fear conditioning, spatial learning [36]

N-receptor β2 subunit KO mice — ↓ avoidance learning, 0 spatial learning [37]

Serotonin

5HT-1B receptor KO mice ↓ ↑ long-term and short-term memory, 0 habituation [38–42]

5HT-1A receptor KO mice ↑ ↓ hippocampal-dependent learning, 0 habituation [40, 43–45]

5HT-5A receptor KO mice ↓ 0 inter- and within-trial habituations [46]

Serotonin transporter KO mice ↑ ↔ within-trial habituation [47]

GABA (also see
Table 2)

GABA-A α5 subunit KO mice 0
↑ hippocampal-dependent trace conditioning,
0 delayed or contextual conditioning

[48]

GABA-A γ2 subunit HZ mice ↑ ↑ cued fear conditioning, 0 spatial memory [49]

Histamine Histamine H3 receptor KO mice ↓ 0 habituation, ↑ spatial memory and learning,
higher resistance to amnestic effects of scopolamine

[50, 51]

Glycine
Glycine transporter 1 brain-selective
disruption

0 ↑ aversive Pavlovian conditioning [52]

Glutamate

B subunit ionotropic receptor
KO mice

↓ olfactory memory (rescued by selective
expression in hippocampus)

[53]

Metabotropic subtype 7 receptor
KO mice

↓ ↓ cued fear response and conditioned taste
aversion

[54]

A type receptor KO mice ↑ ↓ spatial working memory (alternation) [55]

Related models
MAO B targeted inactivation ↑ 0 working memory, ↓ long-term memory [56]

MAO A/B KO mice ↑ 0 within-trial habituation [57]

Neuropeptides and
other brain
proteins

CRF receptor 1 KO mice ↓ ↓ spatial recognition memory [58]

Thyroid hormone α1 receptor
mutations

↑ ↓ olfactory recognition memory, contextual fear
conditioning [59, 60]

Neuropeptide Y KO mice ↓ ↓ attention training test performance [61]

Brain-derived neurotrophic
factor (mice)

↔ ↔ Table 3

Glial protein S100B KO mice ↑ fear conditioning, spatial memory [62]

Protein kinase Cγ KO mice ↓ ↓ spatial and contextual learning [63, 64]

FXR1 KO mice ↓ ↓ fear conditioning, spatial memory, 0 habituation [65]

Modified β-amyloid precursor
KO mice

↑ ↓ spatial learning, habituation [66]

PACAP-type 1 receptor KO mice ↓ ↓ associative learning [67, 68]

Rab3a KO mice
0
↓

↓ cued fear conditioning 0 acquisition,
mild ↓ spatial reversal learning and
spatial working memory

[69]
[70]

Rab3a loss-of-function mutant mice ↓ ↓ cued fear conditioning [69]

(formed by five of 11 known α and β subunits) mediat-
ing anxiolytic-like effect of nicotine [35]. Their loss has
also been noted for Altzheimer’s and Parkinson’s patients
with impaired cognitive functions [35], collectively impli-
cating these receptors in both memory and anxiety. In line
with this, increased anxiety and impaired memory were re-
ported in mice lacking α4 subunit of N-type Ach receptor
(Table 1). Mice lacking the receptor’s β2 subunits (predomi-
nant in hippocampus) showed impaired avoidance learning,
but normal spatial learning in Morris water maze [37]. Sur-
prisingly, ablation of α7 subunits (also rich in hippocam-

pus) leads to no or very mild alterations in anxiety (open
field test) and memory (unaltered acoustic startle habitua-
tion and Pavlovian conditioning, but faster finding a plat-
form in the Morris water maze) [36]. Taken together, this
suggests that various subtypes of ACh receptors may play dif-
ferent roles in memory-anxiety interplay. Notably, RS-1259,
a newly synthesized inhibitor of acetylcholinesterase [93], el-
evated ACh levels in hippocampus and improved memory in
mice, suggesting that targeting brain ACh may lead to effec-
tive therapy of neurodegenerative disorders. The same drug
also inhibited serotonin transport [93], implying that altered
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Table 2: Clinical and preclinical data linking common GABAergic brain areas to pathogenesis of anxiety and depression.

Clinical data Animal data

Amygdala (anxiety, memory)

Activation in patients with posttraumatic stress disorder
[71], during anticipatory anxiety [72], in adults and
adolescents viewing fearful faces; also positive correlation
of amygdalar activation and social anxiety scores [73–75].

Reduced anxiety and memory in rats following muscimol injection
[76–78]. Reduced expression of GABA-A receptor associated protein(a)

after fear conditioning in rats [79]. Increased c-fos expression(b) in rats
following anxiogenic drugs [10]. Correlation between anxiety phenotype
and reduced GABA-A receptor densities, benzodiazepine binding, and γ2
subunit mRNA levels in mice and rats [80–82]. Altered amygdalar electric
activity during fear conditioning in mice [83]. Reduced extracellular
GABA in mice exposed to conditioned fear stimulus [84].

Hippocampus (memory, anxiety)

Reduced blood flow in anxious volunteers during
phobogenic (versus neutral) visual stimulation [85].
Decreased blood flow in right hippocampus in women
with posttraumatic stress disorder [86]

Reduced expression of α2 GABA-A receptor subunit 6 hours after fear
conditioning in rats [79]. Correlation between anxiety and altered
benzodiazepine binding in rats [27, 82]. Reduced expression of α1 and α2
subunits mRNA in punished rats [87]. Altered volume in anxious HAB
(versus low-anxiety LAB) rats [88]. Increased c-fos expression in rats
following administration of anxiogenic drugs [10]. Reduced hippocampal
allopregnanolone levels in anxious high-vocalizing rats [89]. Correlation
between mouse spatial learning abilities and GABA-A receptor densities
[90]. Disrupted context-specific fear memory in rats following muscimol
injection [91].

(a) Modulates channel kinetics and neurotransmission by promoting GABA-A receptor clustering.
(b)Genetic marker of neuronal activation.

serotonergic system may also contribute to these effects (see
further).

Gamma-amino butyric acid (GABA) is the primary
mediator of inhibitory neurotransmission, acting through
ionotropic A and metabotropic B type receptors. GABA-A
receptors are Cl-channels composed of five subunits (from
eight families: α1-α6, β1-β3, γ1-γ3, δ, ε, π, θ, and ρ1-ρ3)
with multiple binding sites for positive (GABA agonists, bar-
biturates, benzodiazepines, steroids, and ethanol) and neg-
ative (GABA-A antagonists, neurosteroid antagonists, ben-
zodiazepine inverse agonists, and chloride channel block-
ers) modulators [4, 12, 94–97]. GABA has long been im-
plicated in anxiety [80, 97–101]. In both humans and ani-
mals, positive modulators of GABA receptors generally pos-
sess anxiolytic activity while negative modulators produce
anxiogenic-like effects. Moreover, various GABA analogs and
agents affecting transmitter metabolism to enhance GABAer-
gic tone have been reported to exert anxiolytic effects [98,
102–107]. The role of GABA in learning and memory has
also been widely recognized [28–30, 90, 100, 108–112]. Three
comprehensive reviews particularly [12, 17, 113] empha-
size the role of central GABA in memory-anxiety inter-
play, noting amnestic/anxiolytic effects of positive, and op-
posite profiles of negative, GABA modulators (also see [27–
30, 111, 114, 115] for details).

Mounting neurogenetic data further implicates GABA in
memory and anxiety. GABAergic genes are associated with
anxiety (α2, α3, α4, α6, β1, γ1, and γ2) [95, 96, 116, 117]
and memory (α5) [48, 49, 118]; see Table 1. Downregula-
tion of α1, α4, α5, α6, γ1, δ genes was reported in anx-
ious versus nonanxious rat strains [119]. Other studies show

reduced expression of rat α2, γ1, or δ subunits after fear
conditioning [79] and chronic unpredictable stress [120].
In humans, treatment-resistant depression with anxiety was
linked to a mutant β1 subunit gene [121], whereas posi-
tive genetic associations were found between GABA-A sub-
units genes and neuroticism (α6 [122]), posttraumatic stress
disorder with anxiety and depression (β3 [123]), and hor-
monal/autonomic stress responses (α6 [124]).

Recent clinical and experimental data outline the role of
GABA and GABA-ergic genes in amygdala and hippocampus
(Table 2); the brain areas involved in the regulation of both
memory and anxiety [125, 126]. In addition to receptors,
these domains are also influenced by GABA metabolism.
While specific amygdalar reduction in expression of GABA-
synthesizing enzyme was observed in animals during learn-
ing [126], spatial learning was impaired in rats following
anxiolytic GABA transporter inhibitor tiagabine [127]. Col-
lectively, these findings confirm that central GABA is a key
mediator regulating anxiety and memory, and that GABAer-
gic genes, metabolism, and/or subunit-specific GABAergic
drugs [100, 128–132] may modulate such interplay.

Glutamate receptors mediate most excitatory CNS neu-
rotransmission. There are several known subtypes of meta-
botropic glutamate receptors which are coupled to G-pro-
teins and exert their effects via second messenger signaling
pathways. Genetic ablation of glutamate subtype 7 receptors
in mice impairs their performance in two distinct amygdala-
dependent paradigms [54] and inhibits hippocampal neuro-
transmission [133], suggesting that both structures are in-
volved in glutamate-mediated mechanisms of memory and
anxiety. Consistent with this, glutamate receptor densities
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positively correlate with spatial learning abilities in mice
[90].

Several recent clinical and experimental data also show
that central dopaminergic system plays a role in the regu-
lation of memory and anxiety, including fear conditioning
[134, 135]. In line with this, a recent quantitative trait loci
study showed that cognitive functions (intertrial habitua-
tion) of 25 inbred mouse strains were linked to a region on
chromosome 15 mapping dopamine D1 and D2 receptors
[136].

Serotonin and its receptors have long been implicated in
memory and anxiety in both humans [38, 122, 134, 137, 138]
and animals [1, 139–144]. In addition to receptors (Table 1),
other factors include serotonin homeostasis and metabolism.
Serotonin is removed from the synaptic cleft by a specific
membrane transporter protein (SERT [31, 145]), represent-
ing an important target for various manipulations. For ex-
ample, pharmacological inhibition of SERT leads to elevated
hippocampal serotonin levels and improved memory [93].
While genetic ablation of SERT in mice is widely used as
a model of anxiety [47, 145–148], these mice display in-
creased poststress responsivity [149], indirectly implying a
better memory for aversive stimuli. Clearly, further studies
are needed to assess the link between SERT and cognitive
abilities in animals, and its relevance to human brain dys-
functions. Overall, human anxiety-related traits seem to gen-
erally facilitate cognitive functions (e.g., acquisition of con-
ditioned fear), and such interplay is partially serotonergically
mediated [134].

Strengthening this notion, genetic variations in SERT
have been linked to strain differences in emotional learning
in rats [150]. In humans, SERT has also been implicated in
anxiety and cognitions. For example, SERT polymorphisms
have been associated with anxiety-related personality traits
[122, 151], amygdalar reactivity [152–154], cognitive abilities
[36, 155], and altered hippocampal neurochemistry [137]. In
line with this, Caspi et al. [156] recently established that hu-
man SERT polymorphisms modulate the effect of life stress
on stress-related CNS pathogenesis, while Fox et al. [157]
found association of SERT polymorphisms with children be-
havioral inhibition—a temperamental construct predicting
anxiety.

Importantly, brain catecholamines do not act individu-
ally in the brain, interact at different levels with each other,
and with other brain molecules [147, 148]. Antipanic drug
phenelzine (a nonselective inhibitor of monoamine oxidase
MAO A/B which elevates brain norephinephrine, dopamine,
and serotonin levels) also exerts mnemotropic effects [19].
MAO A/B knockout mice (demonstrating phenotype simi-
lar to the effect of phenelzine) display robust anxiety pheno-
type but unaltered working memory (Table 1), as assessed by
their open field habituation [57]. In contrast, MAO B inac-
tivation in mice leads to increased anxiety, unaltered spatial
working memory in Y-maze, but reduced habituation to the
forced swim test 4 weeks after the initial trial [56]. Collec-
tively, these data confirm the notion that anxiety and mem-
ory phenotypes are heterogeneous and may be determined
by interactions of various mediator systems. For example,

Birzniece et al. [114] recently analyzed the interplay between
GABA-active steroids and serotonin in modulating cognitive
functions, and Sibille et al. [45] found reduced GABAergic
tone in anxious serotonin 5HT-1A receptor knockout mice,
also displaying memory deficits[44].

3. NEUROPEPTIDES AND NEURAL PLASTICITY
ISSUES

In addition to mediators, brain neuropeptides play a key role
in modulation of memory and anxiety. For example, mu-
tants lacking receptors of “anxiogenic” cotricotropin releas-
ing factor (CRF) display a predictable reduction of anxiety
accompanied by reduced cognitive performance during the
retrieval trial in the Y-maze (Table 1). Overall, these find-
ings are in line with numerous data implicating CRF in
both anxiety and memory, and suggest that novel antistress
mnemotropic drugs may be created based on targeting cen-
tral CRH system [58, 167]. In contrast, mutant mice with re-
duced sensitivity of thyroid receptors [60] display increased
anxiety but reduced memory (Table 1), demonstrating that
not always various manipulations exert synergetic effects on
these two processes. Interestingly, while CRF has been tradi-
tionally linked to memory and anxiety, nonanxiogenic doses
of CRF type 1 and 2 receptor agonist urocortin produced
anxiety (accompanied by amygdalar hyperexcitability) after
5 daily intra-amygdalar infusions in rats [168]. These results
indicate that CRF-induced synaptic plasticity, in addition to
anxiety and memory processes, may be involved in patho-
genesis of emotional disorders (also see [169] for review).

Pituitary adenylate cyclase-activating polypeptide
(PACAP) is another important regulator of synaptic plas-
ticity, neurotrophins, neuromediators, and neuronal dif-
ferentiation [67, 68]. It binds to a highly selective type 1
receptor (PAC1), widely distributed in the limbic system,
including amygdala and hippocampus. Since mice lacking
PAC1 demonstrate reduced anxiety and impaired memory
(Table 1), PACAP/PAC1 system may be directly involved
in the regulation of memory-anxiety interplay. Clearly,
further studies are needed to explore this interesting aspect
in detail, including its relation to PACAP/PAC1-mediated
neuroimmuno-modulation and neuroprotection [170] and
impairment in mossy fiber long-term potentiation [68].

Glial Ca-binding protein S100B also plays an important
modulatory role in memory. S100B knockout mice display
strengthened synaptic plasticity, enhanced long-term poten-
tiation, and spatial memory in Morris water maze, while
mice over-expressing this protein exhibit the opposite phe-
notype [62]. Importantly, these findings show that both neu-
rons and glial cells modulate brain synaptic plasticity, and
that glial-neuronal interactions must also be considered in
examining memory-anxiety interplay in the CNS.

Protein kinase C (PKC) γ is an enzyme highly expressed
in the limbic system—the brain structure that regulates both
memory and anxiety [63, 64]. Since PKCγ plays an im-
portant role in neural plasticity, modulation of neurotrans-
mitter release, and neuronal excitability, its genetic abla-
tion in mice predictably affects their anxiety and learning
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Table 3: Summary of data showing the role of BDNF in memory and anxiety. KO: knockout (−/−), HZ: heterozygous (+/−) mice. (?:
unclear effects. ∗: although authors claimed that anxiety was unaltered in this study, it contradicts the original anxiogenic interpretation of
the social defeat model (also see [158]).)

Model
Effects on

References
Anxiety Memory/learning

BDNF HZ mice 0
↓ learning (but 0 spatial learning
and memory, fear conditioning) [159], but see [160, 161]

Repeated aggression accompanied by
increased BDNF expression in mice

↑∗ ↑ long-term social aversion

[162]

Mesolimbic-specific BDNF knockdown ↑∗ ↓ long-term social aversion [162]

BDNF intrahippocampal
injection in rats

↓↑ ↑ short-term spatial memory [163]

BDNF injection to the cortex in rats ↑ long-term memory [164]

BDNF receptor overexpression in mice ↓ ↑ spatial memory and learning [165]

Forebrain-specific BDNF KO mice 0 ↑?
↓ spatial and nonspatial discrimination
learning, 0 contextual fear

[166]

Brain conditional BDNF KO mice ↑ — [33]

(Table 1). Mechanisms underlying these effects are still un-
known but most likely include postsynaptic modulation of
central GABA-A and serotonergic 5HT2 receptors [64].

From various brain proteins essential for synaptic vesi-
cle trafficking, ras-associated binding proteins, such as Rab3a
[70, 171], deserve special attention in relation to memory
and anxiety. Using Rab3a knockout (−/−) and Ebd (loss-
of-function) Rab3a mutant mice, a recent study has shown
that Rab3a−/−mice display reduced cued fear conditioning,
while Ebd mutants show both reduced anxiety and cued fear
conditioning (Table 1), accompanied by altered hippocampal
and cortical expression of Rab3a [69]. D’Adamo et al. [70]
reported that Rab3a −/− mice display deficits in short- and
long-term synaptic plasticity in the mossy fiber pathway,
normal acquisition but several mild impairments in other
memory tasks (Table 1), accompanied by increased locomo-
tion and reduced anxiety. Collectively, these data implicate
protein modulators of synaptic transmission (such as Rab3a)
in the regulation of memory and anxiety, also enabling fur-
ther dissection of molecular domains involved in their regu-
lation.

Another recent study demonstrated that Rab3a is re-
quired for brain-derived neurotrophic factor (BDNF)-in-
duced synaptic plasticity [172], implying functional inter-
play between the two molecules involved in brain plasticity.
Indeed, BDNF is a key neurotrophic factor, acting through
trkB receptor to regulate brain growth, differentiation, and
functioning [32, 160, 173]. While an early study showed no
anxiety or memory effects of BDNF genetic ablation in mice,
numerous other data did reveal such actions (see Table 3
for details), also implying BDNF role in aversive memo-
ries [158, 162]. Consistent with this, spatial learning in-
duces BDNF and trkB expression in activated brain areas,
while BDNF inactivation markedly impairs spatial learning
[32, 165]. In addition, mutant mice with reduced BDNF
levels display impaired learning and memory in some tasks

[159], whereas increased mouse BDNF signaling by trkB
overexpression improves memory [165].

BDNF is rich in hippocampus and amygdala, and its ad-
ministration improves rat short-term spatial memory and
reduces anxiety [163]. In contrast, the same study revealed
increased anxiety on trial 2 in BDNF-treated rats, suggest-
ing that different types of anxiety may differently inter-
play with BDNF-modulated memories. In line with this,
increased BDNF signaling in mice over-expressing trkB
produced anxiolysis [165], while stress and anxiety corre-
late with memory deficits and reduction in brain BDNF
[174, 175]. Moreover, Rattiner et al. [176, 177] have re-
cently outlined the crucial role of BDNF and its receptors
in hippocampal and amygdala-dependent learning (includ-
ing fear conditioning—another potential mechanism under-
lying BDNF modulation of memory and anxiety).

Overall, human data strikingly parallel animal data on
BDNF role in memory and anxiety (Table 3). For exam-
ple, functional BDNF polymorphisms have been associated
with anxiety-related personality traits [178], hippocampal
volume in healthy volunteers [179], and episodic memory
[180]. Taken together, these data confirm the important role
of BDNF in memory, anxiety, and their interplay. Given the
important role of BDNF in brain plasticity [173], behavior-
modulating properties of this molecule seem to be particu-
larly intriguing.

Importantly, brain mediators seem to cooperate with
BDNF in modulating brain functions. For example, BDNF
interacts with cholinergic, dopaminergic, serotonergic sys-
tems, and SERT [181–184] whose involvement in memory
and anxiety has already been discussed. Analyses of human
quantitative trait loci associated with cognitive functions also
pointed to genes encoding BDNF, ACh, and glutamate re-
ceptors [185]. From this point of view, it is interesting that
heterozygous BDNF knockout mice display unaltered or lit-
tle anxiety and rather mild alterations in memory (Table 3),
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Figure 1: Stress, memory, and anxiety interplay.

accompanied by altered hippocampal ACh but unaltered cat-
echolamine levels [160]. In contrast, simultaneous ablation
of BDNF and SERT alleles exacerbates anxiety in double
knockout mice and reduces hippocampal serotonin levels
[147, 186], confirming an important functional interplay be-
tween BDNF and serotonin in the brain [181]. Extending
original findings of Caspi et al. [156], a recent study has ex-
amined BDNF/SERT genes’ interactions in depressed chil-
dren, reporting that a combination of met-BDNF allele with
two short SERT alleles was associated with higher depression
in maltreated children [187]. Notably, this situation strik-
ingly resembles experiments of Ren-Patterson et al. [186] in
mice, indirectly supporting the notion that depression as well
as specific anxiety-related traits (i.e., social anxiety or post-
traumatic stress) may also be involved in BDNF-SERT inter-
play; also see [158, 162] for discussion.

4. CONCLUSIONS

As already mentioned, memory and anxiety do not always
follow synergetic “high anxiety-better memory” rule, indi-
cating that more complex nonlinear relations exist between
these behavioral domains. Moreover, not always altered anx-
iety is seen together with altered memory, as vise versa
(Table 1), suggesting that under certain circumstances both
domains may be affected independently. Likewise, memory
(as well as anxiety) must not be considered as a single entity,
and clearly represents a complex multidimensional domain.
However, it is important to understand that memory and
anxiety represent two overlapping CNS processes that closely
interact at different levels, including brain neurochemistry,
circuitry, pharmacology, and various genes, as discussed here
in detail. For such interactions, clinical findings strikingly
parallel animal experimentation data, showing how these
factors (in addition to environmental influences) may affect
memory and anxiety. Both neuronal and glial cells, as well as
brain mediators, neuropeptides, and other key proteins, co-
operate in the regulation of memory and anxiety (Figure 1).
Finally, brain plasticity factors (Figure 1) appear to play an

important role in fine-tuning of memory-anxiety interplay,
collectively contributing to the complexity of behavioral phe-
notypes.
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benzodiazepine binding site ligands on active avoidance ac-
quisition and retention: differential antagonism by flumaze-
nil and β-CCt,” Psychopharmacology, vol. 180, no. 3, pp. 455–
465, 2005.
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