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Theoretical Review

ROLE OF GABA IN ANXIETY AND DEPRESSION

Allan V. Kalueff, Ph.D.1 and David J. Nutt, M.D.2�

This review assesses the parallel data on the role of gamma-aminobutyric acid
(GABA) in depression and anxiety. We review historical and new data from both
animal and human experimentation which have helped define the key role for
this transmitter in both these mental pathologies. By exploring the overlap
in these conditions in terms of GABAergic neurochemistry, neurogenetics, brain
circuitry, and pharmacology, we develop a theory that the two conditions are
intrinsically interrelated. The role of GABAergic agents in demonstrating this
interrelationship and in pointing the way to future research is discussed.
Depression Anxiety 24:495–517, 2007. Published 2006 Wiley-Liss, Inc.y
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INTRODUCTION
STRESS, ANXIETY, AND DEPRESSION

Stress plays the main role in the pathogenesis of many
mental disorders [Lopez et al., 1999], with anxiety and
depression being the most common outcomes of stress
in humans and animals [Nutt, 2000, 2001]. Anxiety is
a psychiatric disorder associated with excessive and
pointless worries, motor tension, and fatigue [Nutt,
2005]. Several different subtypes of anxiety include
general anxiety disorder, panic disorder, social anxiety,
agoraphobia, posttraumatic stress disorder, and
obsessive-compulsive disorder [Clement and Chapou-
thier, 1998; Nutt, 2005]. Depression is a complex
heterogeneous disorder with a wide spectrum of
anomalies (such as depressed mood, anhedonia, sleep
disorders, fatigue and loss of energy, lack of concentra-
tion, low self-esteem, negative thinking, and suicid-
ality) and unclear pathogenesis [Cryan et al., 2002;
Wong and Licinio, 2004].

Being extremely debilitating, multifaceted psychia-
tric illnesses, anxiety and depression have a major
impact on the quality of life [Rapaport et al., 2005]. In
addition, the prevalence of both disorders is on the
increase, especially in the young, and they show
considerable overlapping and co-occurrence [Freeman
et al., 2002; Nutt, 2005]. Many symptoms of anxiety
and depression are similar, and mild anxiety can be
difficult to distinguish from mild depression. Depres-
sion is common in anxiety patients and anxiety is often

reported in depressed patients, both being predictors of
poor outcome [Nutt et al., 2002].

Over the past decades there has been intensive study
of a variety of neurobiological mechanisms that
underlie depression and anxiety [Clement and
Chapouthier, 1998; Sundstrom-Poromaa et al., 2003].
Unipolar disorders have been reported to be more
frequently comorbid with anxiety than bipolar
disorders, suggesting that anxiety and major depression
have a common genetic origin [in Nutt, 2001].
Numerous data indicate that generalized anxiety and
depression share their genetic determinants but have
partly different environmental determinants [Kendler
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et al., 1986, 1987; Roy et al., 1995]. The fact that the
symptoms of anxiety and depression may respond
to the same treatments support the possibility of
a common neurobiological dysfunction, although the
exact neurobiological mechanisms behind anxiety and
depression have not yet been fully elucidated [Nutt
et al., 2002]. It is now becoming recognized that
multidisciplinary approaches are necessary to under-
stand the nature of these disorders, and without a
knowledge of both clinical and biological aspects of
anxiety and depression, it is impossible to offer
effective treatment strategies.

Dysfunction of the central gamma-aminobutyric
(GABA) system has long been associated with anxiety
spectrum disorders [Nutt and Malizia, 2001; Lydiard,
2003; Nemeroff, 2003]. In both human and animal
studies, positive modulators of GABA receptors
generally possess anxiolytic activity, while negative
modulators produce anxiogenic-like effects [Kalueff

and Nutt, 1996; Nutt, 2001]. Consistent with
this, various GABA analogs and agents affecting
transmitter metabolism to enhance GABAergic tone
(e.g., valproate, vigabatrin, and tiagabine) have also
been reported to exert anxiolytic effects [Lang and de
Angelis, 2003; Nemeroff, 2003; Rosenthal, 2003; Stahl,
2004].

For years, a focus on catecholaminergic mechanisms
of depression dominated biological psychiatry. However,
a large body of clinical and preclinical literature is now
available to support the role of GABA in mood disorders
(Tables 1, 2). As such, it is now timely to consider the
GABAergic contribution not only to anxiety but also
depression disorders [Krystal et al., 2002; Chang et al.,
2003; Leung and Xue, 2003]. Here we incorporate
recent findings on the GABAergic system in anxiety and
depression in order to discuss GABAergic alterations in
both psychopathologies and outline possible directions
for the search for novel effective medications.

TABLE 1. Effects on depression produced by different GABAergic anxiolytic drugs

Drugs

Effects on depression
Depression-like behaviors in
animal models (see Table 4)Clinical data Key references

GABA analogs and agents affecting transmitter metabolism
Valproate k Gilmer, 2001; Gajwani et al.,

2005a
k

Amino-oxyacetic acid ? k
Vigabatrin k Ring et al., 1993; Besag et al.,

2001b
?

Gabapentin k Ghaemi et al., 1998; Altshuler
et al., 1999; Obrocea et al.,
2002; Fong et al., 2003

?

Tiagabine k Post et al., 1998; Shelton, 2003 ?
Beta-phenyl-GABA k Lapin, 2001 k
GABA agonists
GABA, muscimol, progabidec ? Lloyd et al., 1983; Bartholini,

1984
k

Benzodiazepines k Lemoine et al., 1991;
Birkenhager et al., 1995;
Petty et al., 1995;
Wang and Ketter, 2005

0, k

Ethanol k O’Sullivan, 1984; Khisti et al.,
2002d

k

Neurosteroid agonists k k
Allopregnanolone,

progesteronee
Dubrovsky, 2005; Eser et al.,

2006a,b

k means reduction of depression. 0 5 no effects, ? 5 no data.
aAlso produces mood stabilizing effects [Nestler et al., 2002].
bCauses the opposite effect after long-term treatment.
cProgabide has agonistic properties at both GABA-A and GABA-B receptors.
dAntidepressant action of ethanol in humans is known only for acute mild doses; chronic ethanol consumption (alcoholism) decreases ethanol AD
action and is associated with increased depression and anxiety [Enoch, 2003].
eNote that progesterone is not a direct modulator of GABA-A receptors, and acts via own progesterone receptors or as an antagonist to brain
sigma and nicotinic receptors [reviewed in Bullock et al., 1997; Maurice, 2004]. Recent studies [Reddy et al., 2005] found that anxiolytic effects of
progesterone are preserved in mutant mice lacking progesterone receptors due to its conversion to allopregnanolone, suggesting that its behavioral
effects are due to allopregnanolone modulation of GABA-A receptors.
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ANIMAL MODELS OF ANXIETY
AND DEPRESSION

The present article aims to present a balanced review
where clinical findings will be compared with animal
experimentation data. The growing number of experi-
mental models is now extensively used to search for
novel therapeutic agents and dissect the neurobiologi-
cal mechanisms of brain pathogenesis [Geyer and
Markou, 1995; McKinney, 2004]. But can we model
human anxiety and depression in animals? There are
several traditional models of anxiety, including
paradigms based on exploration (open field, holeboard,
elevated plus maze, light-dark, social interaction,
mirror chamber) and conditioned or unconditioned
threat responses [reviewed in Rodgers, 1997; Crawley,
1999, 2000; Flint, 2002, 2003; Carobrez and Bertoglio,
2005]. The most popular experimental models
of depression include ‘‘despair’’ paradigms (such as
Porsolt’s forced swim [FST], Steru’s tail suspension
[TST] tests, and learned helplessness [LH]), as well as
olfactory bulbectomy (OB), maternal/social depriva-
tion, and ‘‘anhedonic’’ chronic mild stress (CMS) [see
Ho et al., 2002; Nestler et al., 2002; Cryan and
Mombereau, 2004; Cryan et al., 2005; Cryan and
Holmes, 2005, for details]. There are, however,
problems with these models, which have to be critically
discussed before claiming parallels between animal and
human brain disorders.

First, since many aspects of human anxiety and
depression psychopathology are poorly understood

today, the important question of what exactly to model
remains open [see, e.g., Argyropoulos and Nutt, 1997].
Clearly, there are certain features of human behavior
and cognition that cannot be fully reproduced in
animals, thus contributing to the problem of objective
difficulties with translating human symptoms into
animal tests [Crawley, 2000; Wong and Licinio, 2004;
Cryan and Holmes, 2005]. In addition, animal
paradigms usually fail to reproduce complex multi-
syndromal human disorders, may show unwanted
selectivity to particular neuromediatory systems, or
have questionable ability to detect novel compounds
with unknown mechanism(s) of action [see Belzung,
2001; Flint, 2003; Cryan and Mombereau, 2004; Cryan
et al., 2005, for discussion]. Other problems include
conflicting timecourse results (e.g., acute antidepres-
sant effects in some animal models do not match
delayed action of these drugs in humans); model’s
oversensitivity to external (environmental, epigenetic)
or internal (genetic) factors; as well as poor reprodu-
cibility (e.g., CMS) even within the same laboratory
[see Bai et al., 2001; Cryan et al., 2002; Cryan and
Mombereau, 2004, for details]. In addition, some of
these models may lack specificity [Schechter and
Chance, 1979; e.g., failing to discriminate between
anxiolytics and antidepressants: Borsini et al., 2002;
Rupniak, 2003], while others, being specific, do not
target clinically important comorbidity aspects [Crow-
ley and Lucki, 2005]. Overall, this raises the problem of
mimicking (at a behavioral phenocopy level) vs. modeling
a ‘‘true’’ psychiatric state, and the problem of behavioral

TABLE 2. Summary of the effects of depression on GABAergic system

Clinical data Preclinical data

Reduced level of GABA in plasma [Petty et al., 1990, 1998], CSF
and brain [Sundman-Eriksson and Alard, 2002; Sanacora et al.,
1999, 2000; Kugaya et al., 2003; Chang et al., 2003]. Reduction
in the number of GABA neurons in orbitofrontal cortex of
depressed patients [Rajkowska et al., 1999]. Lower cortical
GABA in postpartum depression [Epperson et al., 2006].

Reduced GABA-activated chloride influx in LH model in rats
[Drugan et al., 1989]. Decreased GABA release in hippocampus
in LH model [Petty and Sherman, 1981; Shiah and Yatham,
1998] and in cortex, hippocampus, nucleus accumbens and
brainstem in FST in rats and mice [Borsini et al., 1988; Gomez
et al., 2003; Briones-Aranda et al., 2005]. Increased brain
GABA-A receptor density in OB and LH models in rats [Dennis
et al., 1984; Kram et al., 2000].

Reduced plasma and CSF levels of GABA-active steroid agonists;
increases concentration of steroid antagonists [George et al.,
1994; see also Rupprecht, 2003; Spivak, 2000; and Lydiard,
2003].a

Reduced cortex GABA-active steroid allopregnanolone after social
isolation in mice [see Rupprecht, 2003 for details]. Region-
specific dysregulation of allopregnanolone in OB in rats
[Uzunova et al., 2003, 2004].

Reduced benzodiazepine binding in frontal and orbitotemporal
cortex in a patient with treatment-resistant depression and
anxiety [Kosel et al., 2004]. Increased CSF concentration of
DBI [Barbaccia et al., 1986; Roy, 1991; Sandford et al., 2000],
including anxiety/depressive patients [Guidotti, 1991; but see
George et al., 1994] and suicide depression victims [Rochet
et al., 1998].

Decreased benzodiazepine binding after FST in rat hypothalamus
and amygdala and in chronic stress model in frontal cortex,
hippocampus, and hypothalamus [Medina et al., 1983; Briones-
Aranda et al., 2005]. Increased brain DBI expression after long-
term stress in mice [Katsura et al., 2002; reversed by
antidepressant treatment].b

Increased muscimol binding in rats not susceptible to behavioral
despair [Drugan et al., 1993].

FST, forced swim (Porsolt’s) test; TST, tail suspension test; LH, learned helplessness model; OB, olfactory bulbectomy; DBI, diazepam-binding
inhibitor; CSF, cerebrospinal fluid.
aSee also similar data in Daly et al. [2001]; Reddy [2003]; Vaiva et al. [2003] for premenstrual and posttraumatic stress syndromes.
bSee, however, Dong et al. [1999] reporting reduced DBI mRNA in mouse hypothalamus after social isolation stress.
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vs. physiological vs. cognitive components of patho-
genesis [Battaglia and Ogliari, 2005]. Also, there should
be, but not always recognized, a clear distinction
between a model (simulating the disorder as a
syndrome) and a test (relatively simple assay targeting
specific features of this disorder) [Rupniak, 2003;
Crowley and Lucki, 2005; Urani et al., 2005]. Finally,
there is a great need for the creation of a new
generation of anxiety and depression tests based
principally on new theories and approaches [Cryan
et al., 2002; Cryan and Mombereau, 2004; Cryan and
Holmes, 2005].

Nevertheless, despite all these caveats, animal tests
of anxiety and depression have proven to be crucial
for biomedical research, including fast high-through-
put testing of anxiolytic and antidepressant drugs
[Flint, 2003; Wong and Licinio, 2004], assessment of
behavioral phenotypes of mutant or transgenic animals
[Crawley, 1999, 2000; Flint, 2002; Urani et al., 2005],
testing neurobiological hypotheses [Geyer and
Markou, 1995], or finding candidate genes for human
behavioral disorders [Crowley and Lucki, 2005]. Thus,
understanding the potential benefits and weaknesses
of animal models may allow us to obtain valid animal
experimentation data to parallel and/or complement
the available clinical findings, leading to new, effective
therapies for anxiety and depression.

GABAERGIC MECHANISMS
IN ANXIETY AND DEPRESSION

GABA AND ITS RECEPTORS

GABA is the primary mediator of inhibitory trans-
mission in the mammalian central nervous system
[Sieghart, 1995; Sieghart et al., 1999]. It has complex
interactions with other neurotransmitter systems and
acts through ionotropic A and metabotropic B type
receptors, which play important roles in the brain and
are a target for a variety of endogenous and exogenous
modulators [Nutt and Malizia, 2001; Korpi et al., 2002;
Boehm et al., 2004; Mombereau et al., 2004]. GABA-A
receptors inhibit neurons and are crucial to controlling
brain excitability [Korpi et al., 2002; Chang et al.,
2003]. GABA-A receptors are ligand-gated ion chan-
nels composed of five subunits from eight families:
a (1–6), b (1–3), g (1–3), d, e, p, y, and r (1–3)
[Marowsky et al., 2004; Korpi and Sinkkonen, 2006].
The most abundant composition of GABA-A receptor
is 2a,2b,1g [Sieghart, 1995; Sieghart et al., 1999] such
as a1b2g2 (�40% of all GABA-A receptors throughout
the brain) or a2b3g2 (common in the limbic system,
cerebral cortex, and striatum, �20% of all GABA-A
receptors) [Rosahl, 2003; Mohler et al., 2004]. Binding
of GABA opens up a Cl� channel, which is part of the
protein structure. GABA-A receptors contain binding
sites for many positive modulators including barbitu-
rates, benzodiazepines, steroids, and ethanol [Sieghart
et al., 1999; Korpi et al., 2002; Olsen et al., 2004].

In addition, these include GABA-A antagonists,
neurosteroid antagonists, benzodiazepine inverse ago-
nists, and chloride channel blockers that are negative
modulators of GABA-A receptors [reviewed in Sieghart
et al., 1995; Belelli and Lambert, 2005; Dubrovsky,
2005].

Though less well understood, GABA-B receptors are
thought to modulate the generation of excitatory
postsynaptic potentials and long-term potentiation
[Chang et al., 2003]. They are formed from two
subunits, B1 and B2, each with seven transmembrane-
spanning elements that come together to form hetero-
dimers in which both subunits are necessary for the
receptor to be functional [Mombereau et al., 2004,
2005]. The B1 subunit binds ligands within its
extracellular N-terminus, while the B2 subunit is
responsible for receptor trafficking and its interaction
with cognate G-protein [reviewed in Ong and Kerr,
2005]. GABA-B receptors are found both presynapti-
cally and postsynaptically. Both GABA-A and
-B receptors are shown to be involved in the regulation
of many normal and pathological brain mechanisms
including sleep, memory, epilepsy, and various
emotions [Kalueff and Nutt, 1996; Kalueff, 1997;
Mihalek et al., 1999; Chapouthier and Venault, 2002;
Brambilla et al., 2003; Leung and Xue, 2003; Vaiva
et al., 2004; Cryan and Kaupmann, 2005].

HISTORICAL BACKGROUND
AND RECENT FINDINGS

An important role of GABA in mood disorders was
first postulated by Emrich et al. [1980], and over the
last decades much data has emerged to support the
GABAergic theory of depression [Borsini et al., 1988;
Lloyd et al., 1985, 1989; Petty, 1995; Shiah and
Yatham, 1998]. There are several good recent articles
that discuss clinical and experimental data linking
GABA to depression [Tunnicliff and Malatunska, 2003;
Brambilla et al., 2003; Leung and Xue, 2003]. Briefly,
depression is often associated with decreased GABAer-
gic function, while various antidepressant (AD) manip-
ulations tend to increase it; low GABA function
is proposed to be an inherited biological marker of
vulnerability for depression; positive modulators
of GABA-A receptors can have AD actions, while
GABA-A negative modulators often produce depres-
sion. There is a large body of evidence to confirm that
GABAergic anxiolytic drugs do produce AD effects in
patients (Table 1). Unfortunately, there is little clinical
data on the effects produced by GABAergic anxiogenic
drugs (such as GABA-A antagonists, neurosteroid
antagonists, benzodiazepine inverse agonists, as well
as the chloride channel blockers pentylenetetrazole
and picrotoxin), although some clinical cases with
depressed features have been noted where pentylenete-
trazole was used to activate epileptic foci [see Rodin,
1958, 1970, for review]. There is more evidence for a
role of GABA in depression (see Table 2 for details).
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In line with clinical observations, there are animal
studies also. The pioneering studies of Petty and
Sherman [1981] were first to link the GABAergic
system to animal depression. Since this time, in many
studies a GABA deficit, paralleled by decreased GABA-
A receptor activity, was suggested to be a functional
correlate of depression [Belozertseva and Andreev,
1997; Kram et al., 2000] (see also Table 2), while AD
treatment activated GABAergic functions both in
animals and humans (Table 3). In line with GABAergic
hypothesis of depression, GABA mimetics were found
to possess AD-like properties, while GABA antagonists
increase depression in the above animal models
[Raghavendra et al., 2000]. Tables 4 and 5 represent a
detailed summary of the effects that different GABAer-
gic drugs demonstrate in currently available animal
models of depression. Analysis of data presented in
Tables 1, 3, and 4 shows that activation of the
GABAergic system has both antianxiety and antide-
pressant effects in animals and humans. In contrast,
decreased GABAergic activity consistently correlates
with anxiety and depression (Tables 2, 5). Together, this
clearly demonstrates the key role that GABA plays
in both psychopathologies and indicates that drugs
affecting GABA-A receptors may be useful in the
treatment of both anxiety and depression.

In contrast to GABA-A receptors (Tables 1,2,3,4,5),
the potential role of GABA-B receptors in anxiety and
depression is far less understood [Lloyd et al., 1985;

Nakagawa et al., 1996a; Sand et al., 2000; Mombereau
et al., 2004, 2005; Cryan and Kaupmann, 2005; Pilc
and Nowak, 2005]. For example, the GABA-B agonist
baclofen was found to be ineffective in several animal
anxiety tests [Umezu, 1999; Dalvi and Rodgers, 1996;
Zarrindast et al., 2001], but revealed anxiolytic-like
properties (similar to GABA-A agonists) in several
other studies [File et al., 1991, 1992; Shephard et al.,
1992; Bueno et al., 2005a]. Baclofen was ineffective
in the FST depression test, increased learned help-
lessness, and attenuated the effects of ADs in rats
[Nakagawa et al., 1996a,b], but reduced depressiveness
and reversed reserpine effects in the FST in mice [Aley
and Kulkarni, 1989; see similar data in rats in Hilakivi
et al., 1988]. In humans, baclofen showed no clinical
effects in one study [Jamous et al., 1994], but exerted
anxiolytic effects in posttraumatic patients [Hinderer,
1990] and was effective in treating patients with
posttraumatic stress disorder with comorbid anxiety
or depression [Drake et al., 2003]. It was also effective
on anxiety and depression in alcoholic patients
[Krupitskii et al., 1994] but has been reported to
worsen depression in several other clinical cases [Post
et al., 1991]. Taken together with recent genetic data,
reporting increased anxiety and reduced depression-
like behavior in mutant mice lacking GABA-B receptor
subunits [Cryan and Kaupmann, 2005; Mombereau
et al., 2004, 2005], it seems that (unlike GABA-A
receptors) the GABA-B receptor system may differen-

TABLE 3. Summary of the effects of antidepressant treatments on GABAergic system

Clinical data Preclinical data

Increased cortex GABA [Sanacora et al., 2002] in depressed
patients after SSRI treatments [see Rupprecht, 2003; Khisti
et al., 2000; Uzunova et al., 2003, for reviews].

Elevated hippocampal GABA release after AD treatments in LH
model in rats [Petty and Sherman, 1981; Kram et al., 2000].
Elevated cortical GABA after AD treatment in rats [Yang and
Shen, 2005]. Increased brainstem GABA-A a1, a3, b1, b2
and g2 subunits mRNA levels [Tanay et al., 1996, 2001] and
hippocampal GABA-B1 expression [Sands et al., 2004] after
chronic AD treatment in rats. Increased Cl� uptake in
submissive rats after AD treatment [Malatynska et al., 1995,
2000]. Chronic (but not acute) AD antagonized behavioral
hyperactivity in rats produced by GABAergic inhibition by
picrotoxin [Plaznik et al., 1989].

Increased cortex GABA level after electroconvulsive therapy
[Sanacora et al., 2003] and SSRI, but not after cognitive
behavioral therapy [Sanacora et al., 2003, 2006; Bhagwagar
et al., 2004]. Increased cortex GABA level in drug-resistant
depressed patients after electroconvulsive therapy [Mervaala
et al., 2001].

Elevated striatal GABA level after AD treatment in rats [Gomez
et al., 2003]. Increased GABA synthesis in amygdala,
hippocampus, lateral septum after selective NE reuptake
inhibitors [Herman et al., 2003]. Reduced pentylenetetrazole-
activated hippocampal electroencephalogram power in rats after
AD treatment [Matsubara et al., 2000].

Recovery from depression increases plasma level of GABA-active
steroid agonists allopregnanolone and pregnanolone but
decreases concentration of steroid antagonist 3b-hydroxy-
5a-pregnan-20-one [Rupprecht, 2003]. Restored allopregnanolone
levels in plasma and cerebrospinal fluid in depressed patients
after AD treatment [Uzunova et al., 1998, see Khisti et al., 2000;
Rupprecht, 2003; and Uzunova et al., 2003 for details].

Increased level of allopregnanolone in rat brain after SSRIs
treatment [Uzunov et al., 1996; also see Rupprecht, 2003,
for review]. Restored cortical allopregnanolole levels
after chronic AD treatment in olfactobulbectomized rats
[Uzunova et al., 2004].

Abbreviations as in Table 2. AD, antidepressant; SSRI, selective serotonin reuptake inhibitors; NE, norepinephrin. See also a detailed discussion
in Argyropoulos et al. [2000].
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tially affect anxiety and depression, so is most likely not
involved in synergetic anxiety–depression pathogenesis
[Pilc and Nowak, 2005]. The GABA-B receptor system
will therefore not be discussed here in much detail.

GENETIC DATA: GABAERGIC RECEPTORS

It has long been known that genetic factors play a
role in the etiology of both anxiety and depression
[Kendler et al., 1986, 1987; Finn et al., 2003;
Villafuerte and Burmeister, 2003; Gillespie et al.,
2004]. A recent study found lowered plasma GABA
in depressed patients and their first-degree relatives
[Bjork et al., 2001], confirming that GABAergic tone
also may be under genetic control. Not surprisingly,
neurogenetic approaches (such as genetic polymorph-
ism, quantitative trait loci, microarray, and mutagenesis
studies) provide us with new insights into biological
psychiatry of GABA-related aspects of these disorders.

GABA-A receptor genes form clusters ([r1, r2, d];
[a2, a4, b1, g1]; [a5, b3, g3]; [a1, a6, b2, g2], [a3, y, e])
on several chromosomes, whereas two GABA-B
receptor (B1, B2) genes have been mapped to two

different chromosomes [Hisama et al., 2001; Martin
et al., 2001; Boehm et al., 2004; MGI, 2006]. While
genes encoding a2, a3, a4, a6, b1, g1, and g2 subunits
have been associated with anxiety-like behaviors in
animals [Vekovisheva, 2003; Rosahl, 2003; Marowsky
et al., 2004; Chandra et al., 2005; Gill and Boyle, 2005;
Korpi and Sinkkonen, 2006], the association has also
been established in animals between a1, a3, a6 genes
and depressiveness, and a5 gene and cognitive func-
tions [Crestani et al., 1999; Collinson et al., 2002;
Atack et al., 2005]. Multiple genetic loci studies in mice
[Yoshikawa et al., 2002] linked animal depressive-like
behavior in the FST and TST to GABAergic loci
on chromosomes 8 and 11, encoding a1, a6, and g2
subunits of GABA-A receptors. Recent gene expression
studies in rats showed downregulation of both GABA-
A and GABA-B genes (encoding a1, a4, a5, a6, g1, d,
and B1 subunits) in highly anxious PVG hooded (vs.
Sprague-Dawley) strains following cat exposure [Wang
et al., 2003], as well as reduced expression of a2, g1, or
d subunits after fear conditioning [Mei et al., 2005],
chronic unpredictable stress [Verkuyl et al., 2004], or
depression evoked by social confrontation [Kroes et al.,

TABLE 4. Summary of antidepressant effects produced by GABAergic anxiolytic drugs in animal experimental models

Drugs Models

Valproate FST in mice [Fernandez Teruel et al., 1988; Aley and Kulkarni, 1989; Raghavendra et al., 2000]
Potentiated effects of other ADs in the FST in mice [Szymczyk and Zebrowska-Lupina, 2000]

Amino-oxyacetic acid FST in rats [Borsini et al., 1986, 1988]
Vigabatrin Potentiated ADs’ effects in the FST in mice [Szymczyk and Zebrowska-Lupina, 2000]

OB in rats [Kelly et al., 1997]
Beta-phenyl-GABA Eliminated increase in benzodiazepine receptors produced by the FST in rats [Rago et al., 1990]
GABA FST in mice, LH in rats [Aley and Kulkarni, 1989; see Kram et al., 2000 for details]

Potentiated effects of ADs, reversed depressant effects of reserpine in FST in mice
[Aley and Kulkarni, 1989]

Muscimol FST in mice/rats [Aley and Kulkarni, 1989; Borsini et al., 1986; Nakagawa et al., 1996a;
Raghavendra et al., 2000]

Reversed depressant effects of reserpine in FST in mice [Aley and Kulkarni, 1989]
Potentiated AD effects of ethanol and allopregnanolone in the FST in mice [Hirani et al., 2002;

Khisti et al., 2000]
Progabidea AD-like effects in animal tests [Bartholini, 1984]
Diazepam FST in rats [Nishimura et al., 1989, 1992; but Bourin et al., 1991]

Reduced muricide in OB in rats [Shibata et al., 1984]
Carbamazepine and oxcarbazepine FST and LH in rats [Beijamini et al., 1998, Joka et al., 2000]

Potentiated ADs’ effects in the FST in mice [Szymczyk and Zebrowska-Lupina, 2000]
Alprazolam, adinazolam OB, FST in rats [O’Connor et al., 1985; Flugy et al., 1992]
Pentobarbital FST in mice [Schechter and Chance, 1979]
Ethanol FST in mice, acute administration [Hirani et al., 2002]b

Attenuated depressant action of cocaine in the FST in rats [Hayase et al., 2002]
Allopregnanolone and

progesteronea
FST in mice/rats [Khisti et al., 2000; Estrada-Camarena et al., 2002; Rupprecht, 2003]
Enhanced effects of other ADs in the FST in mice/rats [Estrada-Camarena et al., 2002; Rupprecht, 2003]
Potentiated AD effects of ethanol in FST in mice [Hirani et al., 2002]
Sub-antidepressant doses of steroid agonists in the FST in mice reversed depression associated with

ethanol withdrawal [Hirani et al., 2002]

Abbreviations as in Tables 2, 3.
aSee legend to Table 1 for details on progabide and progesterone mechanisms of action.
bNote that antidepressant action of ethanol in the FST is reported only for its acute administration; its prolonged consumption produced
tolerance to this effect and its withdrawal enhanced behavioral despair and elicited tolerance to antidepressant-like action of acute ethanol
[Hirani et al., 2002].
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2005]. In contrast, chronic antidepressants upregulated
a1, a3, b1, b2, and g2 genes in rat brainstem [Tanay
et al., 1996, 2001], while altered anxiety and depres-
sion-related behavior was found in mutant mice lacking
B1 and B2 receptors [Mombereau et al., 2004, 2005].

A recent human study showed that severe treat-
ment-resistant depression with anxiety was linked
to a mutation in the b1 subunit of GABA-A receptor
[Kosel et al., 2004]. Positive genetic associations were
found between polymorphism in human GABA-A
receptor subunits genes and unipolar (a3, a5), bipolar
(a1, a3, a5, a6) depression or neuroticism (a6)
[Bell et al., 1989; Buckle et al., 1989; Oruc et al.,
1997; Papadimitriou et al., 1998; Massat et al., 2002;
Yamada et al., 2003; Henkel et al., 2004; Horiuchi
et al., 2004; Sen et al., 2004; Korpi and Sinkkonen,
2006] as well as posttraumatic stress disorder with
anxiety and depression (b3) or hormonal and
autonomic stress response (a6) [Feusner et al., 2001;
Uhart et al., 2004]. In line with this, comprehen-
sive genetic linkage studies reported the 5q34
locus (containing a cluster of a, b, and g GABA-A
genes) to be associated with mood disorders [Edenberg
et al., 1997], and exonic variants of the B1 receptor
gene with panic disorder [Sand et al., 2000]. Recent

microarray study also revealed altered expression of
GABA-A (a5, b3, g2, d) and GABA-B (B1) re-
ceptor genes in cortex of depressed patients [Choudary
et al., 2005].

Collectively, these data indicate that both GABA-A
and GABA-B genes may be involved in the regulation
of anxiety and depression. Despite the fact that we still
lack a complete understanding of genes that increase
the risk of depression and anxiety [Nestler et al., 2002;
Finn et al., 2003; Villafuerte and Burmeister, 2003],
these striking data coming from behavioral neuroge-
netics and clinical studies provide substantial support
for the key role that GABA may play in depression and
anxiety pathogenesis. This also suggests that manip-
ulations with GABAergic genes in both animals and
humans, as well as the use of subunit-specific
GABAergic drugs with selective pharmacological
profiles [see Atack, 2003, 2005; Whiting, 2003; Atack
et al., 2005; Rudolph and Mohler, 2006], may allow us
to find new possibilities to cure anxiety and depression.

GABA METABOLISM

In addition to receptor actions, a role in anxiety and
depression pathogenesis belongs to factors affecting

TABLE 5. Summary of prodepressant effects produced by GABAergic anxiogenic drugs in animal experimental models
(all these drugs reduce GABA-A function in one way or anothera)

Drugs Models

Bicuculline (GABA-A-antagonist) FST and LH in rats/mice [Petty and Sherman, 1981; Aley and
Kulkarni, 1989; Hayase et al., 2002]

Reversed effects of several AD in the FST in rats
[Nakagawa et al., 1996a]

Reversed AD effects of valproate, ethanol, fengabine and
melatonin in the FST and OB in rats/mice [Lloyd et al., 1987;

Fernandez Teruel et al., 1988; Raghavendra et al., 2000;
Hirani et al., 2002]

FG 7142 (benzodiazepine inverse agonist) FST in mice [Chopra et al., 1988]
LH in rats [Drugan et al., 1985; Tunnicliff and Malatynska, 2003]

Ro 15-3505 (benzodiazepine inverse agonist) FST in rats [Skrebuhhova et al., 1999]
Beta-carboline-3-carboxylic acid methyl (CCM) ester

(benzodiazepine inverse agonists)
FST in rats [Nishimura et al., 1989]
Mice bred for increased sensitivity for CCM show increased

depression in the FST and TST [Do-Rego et al., 2002].
Pregnanolone sulphate (Cl� channel closer) No effects were found in the FST in mice [Urani et al., 2001,

but see Reddy, 2003].
Finasteride, trilostane, and indomethazine (inhibitors of the

endogenous neurosteroid biosynthesis)
Attenuated AD effects of ethanol in the FST in mice

[Hirani et al., 2002].
Picrotoxin (Cl� channel blocker) FST in mice/rats [Aley and Kulkarni, 1989;

Skrebuhhova et al., 1999]
Reversed effects of muscimol, valproate, and other ADs in the

FST and LH in rats [Borsini et al., 1986; Fernandez Teruel
et al., 1988; Cannizzaro et al., 1993; see also Tunnicliff and
Malatynska, 2003]

Reversed AD effects of progesterone in FST in rats
[Estrada-Camarena et al., 2002]

Pentylenetetrazole (Cl� channel blocker) FST in rats [Cannizzaro et al., 1993; Skrebuhhova et al., 1999]

Abbreviations as in Tables 2, 3.
aSee also interesting data on GABA-A receptor antisense nucleotides that attenuate AD-induced Cl� uptake in rats [Malatynska et al., 2000].
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GABA metabolism and uptake [Goddard et al., 2004].
For example, glutamic acid decarboxylase (GAD) is a
key enzyme of GABA biosynthesis from glutamic acid.
Both unipolar and bipolar mood disorders have been
found to be associated with polymorphism in the
GAD67 gene encoding a 67-kDa isoform of GAD
[Lappalainen et al., 2004; Lundorf et al., 2005]
responsible for 90% of GABA synthesis from gluta-
mate in the brain. Reduced GABA levels and increased
anxiety were found in mice lacking a small 65-kDa
isoform of GAD (GAD65) responsible for fine-tuning
of GABAergic neurotransmission [Kash et al., 1999;
Stork et al., 2000], whereas GAD65 expression was
increased by AD reboxetine in septum of stressed rats
[Herman et al., 2003]. Recent studies found the link
between polymorphism in the GAD65 gene and
anxiety-related behavioral inhibition in children
[Smoller et al., 2001], while prefrontal cortex and
cerebellar GAD65 and GAD67 levels were decreased
in depressed patients [Guidotti et al., 2000; Fatemi
et al., 2005],

GABA transaminase (GABA-T) is another key
enzyme in GABA turnover, which catabolizes GABA.
Its inhibitors (such as valproate and vigabatrin) elevate
GABA levels, show pronounced anxiolytic effects in
various experimental models [Sherif and Oreland,
1995; Lang and de Angelis, 2003], and are able to
exert (valproate) consistent AD effects in humans
[reviewed in Post, 2004; Rogawski and Loscher, 2004;
Gajwani et al., 2005, Zwanzger and Rupprecht, 2005].

Several known GABA transporter proteins (GAT
1–4) and their subtype-specific modulators have also
been shown to influence GABAergic signaling
[Sundman et al., 1997; Keros and Hablitz, 2005], thus
opening the possibility of novel psychotropic GAT-
related drugs [Schousboe et al., 2004]. Indeed, GAT-1
inhibitors (such as NO-711 and tiagabine) increase
GABA tone and exert predictable anxiolytic effects in
animals [Dalvi and Rodgers, 1996; Schmitt and
Hiemke, 1999; chronic treatment: Schmitt et al.,
2002] and humans [Crane, 2003; Schaller et al., 2004;
Connor et al., 2006]. For example, tiagabine was useful
to treat treatment-resistant anxiety as well as various
anxiety disorders combined with anxiety [reviewed in
Zwanzger and Rupprecht, 2005]. Although in a recent
study suicidal depression did not correlate with altered
GAT-1 binding in frontal cortex and cingulated gyrus
[Sundman-Eriksson and Allard, 2002], several clinical
studies indicate that GAT inhibitors such as tiagabine
may be used as mood stabilizers, indicating their utility
in therapy for depression [Kaufman, 1998; Schaffer
et al., 2002; Schwartz, 2002] via modulation of central
GABAergic system [but see Post, 2004]. Collectively,
these findings indicate that both anxiety and depression
depend on GABA metabolism, whose imbalance
may play a role in their overlapping pathogenesis.
Therefore, novel drugs targeting both the activity and
expression of enzymes of GABA synthesis and meta-
bolism, as well as GAT [Sarup et al., 2003], may

represent potential interest for antianxiety/antidepres-
sant therapy.

Notably, drugs affecting GABA metabolism may
also have additional mechanisms of action, which have
to be taken into account. For example, valproate
modulates metabolism of g-hydroxybutyric acid
(GHB), a weak agonist at GABA-B receptors [reviewed
in Crunelli et al., 2005]. In line with this, the AD
phenelzine (effective in therapy of social anxiety and
panic disorders in humans) inhibits GABA-T, elevates
brain GABA levels, produces anxiolytic-like effects in
animals, and also modulates glutamate and catechola-
mine neurotransmission [reviewed in Yang and Shen,
2005]. Taken together, these data contribute to the
complexity of GABAergic and other mechanisms in
anxiety and depression, prompting new strategies of
therapy targeting simultaneously GABA and other
mediator systems (see below).

GABA AND OTHER SUBSTANCES INVOLVED
IN ANXIETY AND DEPRESSION

The well-established endocrine abnormalities of
depression and anxiety [Erickson et al., 2003] are
another important aspect to consider in relation to
GABA. For example, neurosteroids modulating
GABAergic/benzodiazepine functions may have a
potential for the development of new AD drugs
[Strohle et al., 1999; Khisti et al., 2000] which at the
same time should have an anxiolytic profile [Ungard
et al., 2000; Reddy, 2003]. Interestingly, the well-
known acute anxiolytic and mood lifting–euphoric
action of ethanol may be produced by its direct effects
on GABA-A receptors as well as due to modulation of
the neurosteroid system [Khisti et al., 2002]. As such,
the search for novel drugs binding to ethanol site on
GABA-A receptors may be a promising multitarget
approach.

On a related point, anxiety and depression have long
been associated with alterations in secretion of many
hormones including adrenocorticotropic hormone
(ACTH), cortisol/corticosterone, corticotropin-releas-
ing hormone (CRH), adrenal catecholamines, oxytocin,
prolactin, and rennin [Arborelius et al., 1999; Carrasco
and Van de Kar, 2003; Finn et al., 2003]. As
summarized by these authors, endogenous and
exogenous GABAergic drugs may affect the secretion
of some of these hormones. Several benzodiazepine
agonist ligands decrease ACTH/corticosterone as well
as oxytocin and prolactin responses to stressors
[Carrasco and Van de Kar, 2003]. Also, the GABAergic
system inhibits stress-induced cortisol secretion as well
as CRH liberation into the portal vein [Lopez et al.,
1999]. It is therefore possible that in depression a
deficiency of endogenous GABA/benzodiazepine
ligands (see Table 2) could lead to neuroendocrinolo-
gical disregulation that contributes to pathogenesis.
It also seems possible that correction of stress-induced
neuroendocrinological mechanisms by GABAergic
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drugs may be a potential therapeutic approach to treat
depression and anxiety targeting both ‘‘low GABA -
high stress’’ and ‘‘high stress - low GABA’’ pathogenic
mechanisms. Perhaps affecting one disorder (e.g.,
anxiety) through direct anxiolytic action on GABA
receptors, some GABAergic drugs may in parallel
correct stress-induced neuroendocrine mechanisms.
This may not only target the ‘‘endocrine’’ component
of the existing anxiety but also aim at the endocrine
mechanisms underlying depression. The latter may
lead to additional very useful therapeutic effects
targeting anxiety/depression disorders and/or their
comorbidity caused by neuroendocrine disregulations.

A possible interplay between aversive memories
and stress neuroendocrinology outlines a further
possibility where GABAergic intervention may be
useful to treat anxiety and depression. Treating one
disorder (e.g., anxiety) through direct anxiolytic action
on GABA receptors, GABAergic drugs may in parallel
block recurrent negative memories that not only
complicate the existing disorder [Kalueff and Nutt,
1996] but also provoke the other disorder (e.g.,
depression). The role of negative memories in both
anxiety and depression has been reported extensively in
the literature [Davidson, 2002]. In addition to the
above positive effects, GABAergic drugs may further
improve the situation by correcting neuroendocrine
mechanisms produced by negative memories. In line
with this, the amnestic action of GABA-positive
modulators has been shown to block conditioned
vasopressin, oxytocin, and ACTH stress responses
[Carrasco and Van de Kar, 2003]. The latter may lead
to the additional (third) useful therapeutic effect of
GABAergic-positive modulators targeting the dis-
orders within a complex treatment approach we are
presenting here.

The critical role of neuropeptides in modulation
of GABAergic function and anxiety/depression inter-
play also has to be considered. For example, melatonin,
which is known to modulate the GABAergic system,
was shown to have both anxiolytic and AD properties
in animals [Raghavendra et al., 2000]. Similar proper-
ties have been found for antagonists of cholecystoki-
nin—the neuropeptide that modulates the GABAergic
system and is suggested to be involved in both anxiety
and depression pathogenesis [see Lofberg et al., 1998,
for details]. Finally, the interaction of GABA with other
brain neurotransmitter systems shall be mentioned.
For example, the potential for norepinephrine (NE)
interaction with GABA in the limbic region [recently
suggested by Herman et al., 2003] may be critical since
both mediators are largely involved in anxiety and
depression pathogenesis [Coplan and Lydiard, 1998].
As such, multiple vs. specific neurotransmitter system
dysfunctions shall be considered for possible therapeu-
tic purposes. Perhaps improving anxiety by GABAergic
drugs we may at the same time improve depression
through the interaction of GABA with NE, and vice
versa.

BRAIN CIRCUITS OF ANXIETY
AND DEPRESSION

The GABAergic system is now rapidly emerging as a
target for development of medications of anxiety and
mood disorders [Krystal et al., 2002; Nutt et al., 2002].
It therefore seems important to consider the possible
neural anatomical underpinnings of both anxiety
and depression relating to GABA [Davidson et al.,
2002; Chang et al., 2003]. Chronic stress exposure—
the most common cause of depression—has been
shown to activate GABAergic forebrain areas, includ-
ing dorsomedial hypothalamus and hippocampus
[Herman et al., 2003]—important parts of depression
circuits. Several studies have found significant reduc-
tions in hippocampal volume in depressed subjects
[see review in Sheline, 2003], indicating the role the
hippocampus may play in depression pathogenesis
(see Table 6 for details). The hippocampus is particu-
larly rich in GABAergic neurons [Banks et al., 2000].
The well-known role the hippocampus plays in
memory, and the role memory plays in anxiety and
depression, may link depression and anxiety pathogen-
esis to memory-related GABAergic processes in the
hippocampus.

Brain morphological and metabolic changes asso-
ciated with major depression have been found in the
amygdala [Drevets, 1999; Sheline, 2003]—the
GABAergic structure that has long been associated
with anxiety and also involved in storage of aversive
memories [Davis and Whalen, 2001; Chhatwal et al.,
2005]. Proving this putative amygdala–anxiety–
depression–memory link, Jasnow and Huhman [2001]
reported GABAergic involvement in a conditioned
social defeat model in hamsters. In line with these
preclinical findings, recent functional MRI studies
established marked amygdala activation in response to
fearful facial affect in depressed patients vs. normal
controls [Yurgelun-Todd et al., 2000]. Interestingly,
Strakowski et al. [2002] found that amygdalar changes
are specific to the type of depression—with amygdalar
volume increased in bipolar disorders and decreased in
unipolar depression. The latter raises the possibility
that the amygdala plays different roles in various
depression disorders and might explain why the drugs
affecting GABAergic neurons would differently treat
unipolar and bipolar depression.

Recently, the important role of the midbrain tectum
was suggested for anxiety and depression pathogenesis
[Graeff et al., 1993; Brandao et al., 2003]. The
midbrain tectum is rich in GABAergic neurons
[Pandossio et al., 2000; Bueno et al., 2005a] and a
number of animal studies have shown GABAergic
drugs affect the midbrain tectum and alter stress-
related anxiety-like behavioral responses, while certain
neurochemical or morphological alterations in this
brain area have been found in animal depression-like
states (Table 6). As such, although clinical studies are
still needed to confirm this notion, it seems possible
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TABLE 6. Clinical and preclinical data linking common GABAergic brain areas to pathogenesis of anxiety
and depression

Anxiety Depression

Clinical data
Amygdalaa

Activation in patients with posttraumatic stress disorder [Rauch
et al., 1996], during anticipatory anxiety [Phelps et al., 2001], in
adults and adolescents viewing fearful faces; also positive
correlation of amygdalar activation and social anxiety scores
[Morris et al., 1998; Killgore and Yurgelun-Todd, 2005].

Reduced volume in depressed patients [Caetano et al., 2004] and
children [Rosso et al., 2005]. Correlation of amygdalar
activation in response to emotional faces with symptom
improvement in major depression [Canli et al., 2005].
Activation in adults viewing sad vs. happy faces [Killgore and
Yurgelun-Todd, 2005].

Hippocampus
Reduced blood flow in anxious volunteers during phobogenic (vs.

neutral) visual stimulation [Wik et al., 1993]. Decreased blood
flow in right hippocampus in women with post-traumatic stress
disorder [Bremner et al., 1999].

Reduced volumes in depressed (including drug-free) patients;
negative correlation between hippocampal volumes and length
of depression [Caetano et al., 2004; Hickie et al., 2005;
Neumeister et al., 2005; Saylam et al., 2006], also see [Sheline
et al., 2002] for a detailed review.

Hypothalamus
Activation in patients with panic disorder [Boshuisen et al., 2002]. Activation in depressed patients viewing negative vs. reference

images [Malhi et al., 2004].

Prefrontal cortex
Reduced blood flow in anxious volunteers during phobogenic (vs.

neutral) visual stimulation [Wik et al., 1993]. Reduced blood
flow in women with posttraumatic stress disorder [Bremner
et al., 1999].

Altered magnetoencephalographic activity in depressed patients
vs. healthy controls [Mainhofner et al., 2005]. Altered
metabolism in depressed patients, its correction after
electroconvulsive therapy [Michael et al., 2003]. AD effects of
repetitive transcranial magnetic stimulation in drug-resistant
depressed patients [Rossini et al., 2005].

Midbrain tectum
Activation in patients with panic disorder [Boshuisen et al., 2002].

Panic-like effects following stimulation in humans [Nashold
et al., 1969; Amano et al., 1978].

Preclinical data
Amygdala
Reduced anxiety in rats following muscimol injection to

basolateral amygdala [Bueno et al., 2005b]. Reduced amygdalar
expression of GABA-A receptor associated proteinb 6 h after
fear conditioning in rats [Mei et al., 2005]. Increased c-fos
expressionc in rats following administration of several
anxiogenic drugs [Singewald et al., 2003]. Increased lactate-
evoked anxiety by bicuculline injected into basolateral amygdala
in rats [Sajdyk and Shekhar, 2005]. Correlation between anxiety
phenotype in several inbred mouse strains and reduced GABA-
A receptor densities, benzodiazepine binding and g 2 subunit
mRNA levels in central, lateral and medial amygdalar nuclei
[Yilmazer-Hanke et al., 2003; Caldji et al., 2004]. Reduced
extracellular GABA in amygdala in mice exposed to conditioned
fear stimulus [Stork et al., 2002].

ADs reduce muricide and amygdaloid after-discharge in rats
induced by amygdalar stimulation [Kamei et al., 1975]. Reduced
benzodiazepine binding in amygdala 24 h after FST in mice
[Briones-Aranda et al., 2005]. Reduced allopregnanolone levels
in amygdala in the olfactobulbectomy model of depression in
rats [Uzunova et al., 2003]. Altered neurotransmitter turnover
in amygdala following FST in Wistar–Kyoto vs. non-stressed or
Wistar rats [De La Garza and Mahoney, 2004].
Reduced allopregnanolone levels in amygdala of depressed
olfactobulbectomized rats [Uzunova et al., 2003].

Hippocampus
Reduced expression of a 2 GABA-A receptor subunit 6 h after fear

conditioning in rats [Mei et al., 2005]. Reduced hippocampal
expression of a 1 and a 2 subunits mRNA in punished rats
[Zhang et al., 1998]. Altered volume in anxious HAB (vs. low-
anxiety LAB) rats [Kalisch et al., 2005]. Increased c-fos
expressionc in rats following administration of several classical
anxiogenic drugs [Singewald et al., 2003]. Reduced
hippocampal allopregnanolone levels in anxious high-vocalizing
rats [Zimmerberg et al., 2005].

Reduced GABA levels 24 h after FST in mice [Briones-Aranda
et al., 2005]. Altered cDNA gene expression profile in rats after
chronic ADs [Drigues et al., 2003]. Altered hippocampal
neurotransmission after FST in rats [Linthorst et al., 2002].
Altered volume in rats with higher depressiveness in FST
[Kalisch et al., 2005]. Reduced benzodiazepine binding and
GABA-A a 1 subunit mRNA in mice and rats exposed to
repeated FST [Medina et al., 1983; Weizman et al., 1989;
Montpied et al., 1993].

Hypothalamus
Increased sensitivity to chemically evoked anxiety in rats with

experimentally reduced GABA synthesis in hypothalamus
[Shekhar et al., 1996]. Increased c-fos expressionc in rats
following administration of several anxiogenic drugs [Singewald
et al., 2003]. Reduced anxiety in rats following intra-

Reduced benzodiazepine binding in mice exposed to repeated
FST [Weizman et al., 1989]. Reduced GABA levels and
benzodiazepine binding 24 h after FST in mice [Briones-Aranda
et al., 2005]. Reduced GABAergic transmission and altered
GABA-A a 5, g 1d and d subunits gene expression following
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that GABAergic influences on the midbrain tectum
may play a role in anxiety and depression.

The prefrontal cortex has been reported to be
activated by a provocation test across several anxiety
disorders [Davidson, 2002; Nestler et al., 2002] and is
also an important part of the brain depression circuits
(Fig. 1) [Sheline, 2003]. Morphological and metabolic
changes associated with depression have been found in
the prefrontal cortex in many studies [Yurgelun-Todd
et al., 2000; Sheline, 2003]. It is worth mentioning that
GABAergic neurons represent the highest population
in the cortex and play a crucial role in regulation of
inputs and outputs of the cortex. The prefrontal cortex
has also been traditionally linked to memory and
higher cognitive functions—ones that that are extre-
mely relevant to linking anxiety and depression (see, for
example, data on reduced benzodiazepine binding in
prefrontal cortex in combat-related posttraumatic
stress disorder [Bremner et al., 2000b]). Recent
postmortem studies have established that depressive
disorders are characterized by alterations in the density
and size of neuronal and glial cells in frontolimbic
brain regions [Rajkowska, 2003]. Importantly, these
regions, rich in GABAergic neurons, are also reported
to be involved in anxiety spectrum disorders [Mindus
et al., 1986; Wu et al., 1991]. For example, infusion of
the GABA agonist muscimol in prefrontal cortex
produced clear anxiolytic effects in rats [Shah et al.,
2005]. Taken together, the available neuroanatomical

data indicate clear overlapping of several GABAergic
neural circuits (Table 6) that may be considered as one
integral anxiety/depression circuit (Fig. 1) consisting
of three interplaying domains—anxiety, memory, and
depression.

GABA NEUROIMAGING DATA

Recent sophisticated neuroimaging methods, such
as positron emission (PET) and single photon emission
computed (SPECT) tomography and proton magnetic
resonance spectroscopy (MRS), enable further neuro-
biological underpinning of anxiety and depression
[Kaschka et al., 1995; Bremner et al., 1997; Malizia
et al., 1998; Ketter and Wang, 2002; Chang et al., 2003;
Epperson et al., 2005]. Despite certain limitations in
spatial and temporal resolution, these methods enable
an in vivo real-time assessment of specific areas in these
disorders with direct measurement of GABA neuro-
chemistry and comparison of therapeutic effects of
different therapies [Bremner et al., 2000a,b; Grachev
and Apkarian, 2000; Kosel et al., 2004; Sanacora et al.,
2006].

Obtained using different techniques, neuroimaging
data firmly confirm the involvement of central GABA
in anxiety and depression. In patients with panic
disorder, a reduction in benzodiazepine binding in
the brain was found by PET [Malizia et al., 1998] and
SPECT [Kaschka et al., 1995; Bremner et al., 2000a].

hypothalamic administration of GABAergic anxiolytic drugs
[Jardim and Guimaraes, 2001].

3-week chronic unpredictable stress in rats [Verkuyl et al.,
2004].

Prefrontal cortex
Increased c-fos expressionc in rat prelimbic cortex following

administration of several anxiogenic drugs [Singewald et al.,
2003]. Reduced anxiety in rats following muscimol infusion into
prefrontal cortex [Shah et al., 2004]. Increased anxiety and
reduced activity in anxious HAB vs. non-anxious LAB rat strains
[Kalisch et al., 2004].

Altered neurotransmitter turnover following FST in
Wistar–Kyoto vs. non-stressed or Wistar rats [De La Garza and
Mahoney, 2004].

Midbrain tectum
Panic-like escape behavior in rats evoked by electrical stimulation

or microinjections of GABA-A antagonists [Schenberg and
Graeff, 1978; Graeff et al., 1986; Brandao et al., 2003], and
reduced by GABA-A agonists and benzodiazepines [Bovier
et al., 1982; Audi and Graeff, 1984, 1987; Graeff et al., 1986].
Reduced panic-like behavior in rats by intra-DPAG injection of
muscimol and baclofen, and increased panic by benzodiazepine
inverse agonist FG 7142 [Bueno et al., 2005a]. Increased anxiety
by prior electrical stimulation of the inferior colliculus in rats
[Pandossio et al., 2000]. Reduced vocalization and freezing in
rats following muscimol or midazolam injection into the
inferior colliculus [Nobre and Brandao, 2004].

Reduced benzodiazepine binding in mice exposed to repeated
FST [Weizman et al., 1989]. Neurochemical changes in mouse
inferior colliculus following AD treatment [Williams et al.,
2005]. Reduced blood flow in inferior colliculus in several
different models of depression in rats [Caldecott-Hazard et al.,
1988]. Pronounced neuromorphological changes in inferior
colliculus in rats following chronic immobilization stress
[Dagnino-Subiabre et al., 2005].

DPAG, dorsal periaqueductal gray; FST, forced swim test of depression; AD, antidepressant.
aAlso see Quirk and Gehlert [2003] for a detailed review.
bModulates channel kinetics and neurotransmission by promoting GABA-A receptor clustering.
cGenetic marker of neuronal activation.
dRobust trend (P 5.06) for this subunit.

TABLE 6. Continued

Anxiety Depression
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While a similar phenomenon has been revealed by
SPECT in patients with posttraumatic stress disorder
[Bremner et al., 2000b] or severe treatment-resistant
anxiety and depression [Kosel et al., 2004], numerous
neuroimaging studies [MRS: Kugaya et al., 2003;
Epperson et al., 2006; Sanacora et al., 2006; SPECT:
Kosel et al., 2004; Mervaala et al., 2001] consistently
show reduced central GABAergic function in depres-
sion and its correction by AD therapy (see Tables 2, 3
for details). Strikingly paralleling other clinical and
experimental data (reviewed above), these findings
further support the notion that impaired GABAergic
function is directly involved in anxiety, depression,
and their interplay.

CONCLUSION
Summarizing, it seems likely that there are over-

lapping GABAergic mechanisms of anxiety and depres-
sion due to: 1) common neurochemical mechanisms;
2) similar brain structures involved in the regulation of
anxiety and depression; 3) common genetic origins
of anxiety and depression; and 4) overlapping or
correlation in neuropsychopharmacological effects
of drugs (Tables 1–6). Consistent overlapping of
clinical efficacy as well as activity in animal tests across
all classes of GABAergic anxiolytics and antidepres-
sants further strengthens the idea that such effects are
not the result of a ‘‘lack of specificity,’’ but rather
represent a fundamental anxiolytico-antidepressant
potential of GABA-A-positive modulators. It is also
clear that since GABA, as a part of both anxiety and
depression pathogenesis, is responsible for many
symptoms of these disorders, drugs that affect

GABA-A receptors may be especially useful in selective
treatment of symptoms that are common for anxiety
and depression (Fig. 2). Here we will make a further
step and outline several possible directions for future
progress in this field.

1. Since anxiety and depression have many common
emotionality features, it may be suggested that GABA-
active agents are particularly effective in treating the
‘‘emotional’’ component of both anxiety and depres-
sion. The frontolimbic network and especially
prefrontal cortex is a key substrate for voluntary
suppression of sadness, while chronic incapacity to
suppress negative emotions was suggested to be a key
factor in the genesis of depression and anxiety
[Levesque et al., 2003]. Because GABAergic drugs
have been shown to act on this brain structure, it is
possible to expect that they may lead to antianxiety and
antidepressant effects by improving the patient’s ability
to control her/his own negative emotions.

2. These drugs may be used as a specific medication
of choice for anxiety (and, perhaps, panic) and
depression comorbidity states.

3. The fine-tuning and homeostatic balance of the
GABAergic inhibitory tone in the brain is a prerequisite
for controlling excitatory neurotransmission [Sarup et al.,
2003]. Several drugs that affect GABA transport and
metabolism also possess effects on anxiety and depres-
sion. Further studies on modulation of GABA transport
and metabolism are of therapeutical interest in GABA-
related disorders, including anxiety and depression.

4. GABAergic drugs may be effective in psycho-
pathologies with mixed or unclear symptoms, and also
in some urgent clinical cases of severe anxiety and/or
depression. It is especially critical in situations when
the previous history of the patient is unknown and/or

Cortex
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Substantia nigra

Anxiety domain

Memory
domain
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Figure 1. Overlapping anxiety and depression circuits (GABAer-
gic areas are in bold).
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Figure 2. Multiple targets for GABAergic drugs in a complex
treatment of stress-related disorders.
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there is no time for proper diagnostics. We therefore
speculate that some highly effective potential mood-
stabilizing, antipanic, antimanic, and antisuicide drugs
may be designed on the basis of selective exogenous
or endogenous modulators of the central GABAergic
system [see also Shelton, 2003].

5. Since GABA-active neurosteroids play an im-
portant role in the pathogenesis of anxiety and
depression [Strohle et al., 1999; Guidotti et al., 2001;
Reddy, 2003], it is possible to expect that novel
GABAergic steroid agents will be a useful tool in the
treatment of steroid-dependent disorders including
premenstrual and menopausal syndromes [Barbaccia
et al., 2000; Sundstrom et al., 1997; Sundstrom-
Poromaa et al., 2003] characterized by increased
anxiety and depression. In addition, steroids may play
a unique modulatory role in tuning sensitivity of
GABAergic receptors to GABA and other GABA-
active substances [Turner et al., 1989; Olsen et al.,
1991; also see Olsen and Sapp, 1995, for review]. The
genomic mechanism of neurosteroid action may
include effects of expression of genes encoding
subunits of GABAergic receptors [Gulinello et al.,
2001]. As such, alterations in endogenous steroids
during anxiety or depression may largely affect brain
GABAergic processes [reviewed in Dubrovsky, 2005;
Eser et al., 2006a,b]. This, in turn, may lead to
i) further acceleration of the existing anxiety or
depression pathogenesis and/or ii) provoke new,
secondary (e.g., anxiety, comorbidity, etc.) emotional
disorders. Importantly, based on the nature of neuro-
steroid actions on the nervous system [Reddy, 2003], it
is possible to expect that steroid-based GABAergic
modulators may in fact create the grounds for the fast-
acting AD drugs—the need for which has been so
widely recognized.

6. GABA-A receptors appear to occupy a central role
in mediating the effects of ethanol in the brain [Davies,
2003]. Alcoholism is often associated with low
GABAergic function and increased anxiety and depres-
sion [Roy et al., 1991; Enoch, 2003]. A GABAergic
genetic component is established for human anxiety,
depression, and alcoholism [Nutt et al., 2002; Davies,
2003] as well as alcohol-related phenotypes in animals
[Boehm et al., 2004]. Given this and the role of GABA-
A receptors in ethanol’s behavioral actions [Boehm
et al., 2004], the involvement of GABAergic genes in a
complex interplay between these three disorders may
be postulated. In addition, GABA-active neurosteroids
play a pivotal role in the actions of ethanol and in
depression associated with chronic ethanol consump-
tion [Hirani et al., 2002, 2005]. Therefore, multitarget
complex treatment of anxiety/depression complicated
with alcohol abuse [Enoch, 2003] by positive mod-
ulators of GABA-A receptors may be a promising
therapeutic approach to treat these specific conditions.

7. The important role of cognitive factors in both
anxiety and depression pathogenesis [Kalueff and Nutt,
1996] outlines further possibilities where GABAergic

drugs may theoretically have extraordinary effective-
ness. It is well known that several subtypes of anxiety
and depression are characterized by recurrent unplea-
sant cognitions that complicate therapy and, in fact, are
a key part of pathogenesis per se (Fig. 2). Since
GABAergic drugs are traditionally known to possess
robust effects on memory [reviewed in Kalueff
and Nutt, 1996; Chapouthier and Venault, 2002], we
suggest that their use may be especially effective in
targeting anxiety and/or depression associated with
negative memories [also see good recent reviews in
Quirk and Gehlert, 2003; Barad, 2005]. Importantly,
the same approach may be used for a complex
treatment of patients with posttraumatic stress
disorder. Inhibition of such memories by GABAergic-
positive modulators in some cases could be an
important part of rational antidepressant and anxiolytic
therapy.

8. Stress as well as many GABAergic psychotropic
drugs have been reported to change GABA receptor
subunits expression, while the composition of GABA
receptors is known to dramatically affect its functions
[Zhang et al., 1998; Vekovisheva, 2003]. As such,
‘‘programming’’ of GABAergic receptors by stress
(including anxiety and depression) may not only
facilitate the existing disorder but provoke a new
illness or induce comorbidity states. However,
modulation of the GABA receptor composition by
GABAergic drugs may provide us with an additional
therapeutic tool to fight anxiety and depression
disorders. For example, while affecting one disorder
(e.g., anxiety) through direct anxiolytic action, certain
GABAergic drugs may influence type- and region-
specific expression of the receptor subunits. The
latter may lead to additional therapeutic effects
of the drug targeting the second (e.g., depression)
disorder due to changes in the GABA receptor
properties.

9. Finally, since all currently available medications
for mood disorders exert their therapeutic effects
in weeks or months, there is a widely recognized need
to find novel drugs that will affect depression much
faster [Freeman, 1997; Nestler et al., 2002]. GABAer-
gic drugs, acting both pharmacologically and genomi-
cally, might represent a particularly promising area of
research in this field. Indeed, upregulation of GABA-A
receptor subunits expression by benzodiazepines
occurred within several days vs. several weeks needed
for similar effects produced by traditional antidepres-
sants [Tanay et al., 2001].

Together, it is now clear that, accompanied by
intensive studies in the field of pharmacological and
neurogenetical regulation of memory, anxiety, and
depression, the ‘‘anxiety-depression’’ GABAergic con-
cept that we develop here may significantly improve our
understanding of the general mechanisms underlying
stress-induced brain disorders. It may also point to new
directions for a rational search for novel agents and
even classes of stress-protecting psychotropic drugs.
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