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Modeling SERT � BDNF interactions
in brain disorders: single BDNF gene
allele exacerbates brain monoamine
deficiencies and increases stress
abnormalities in serotonin
transporter knock-out mice

abstract

There is growing clinical evidence that many psychiatric illnesses

have overlapping genetic mechanisms. Understanding these mechan-

isms is important to the improvement of psychiatric treatment and

preventions of the disorders, and animal genetic models continue to

be a critical avenue of research towards these ends. As serotonin is a key

neurotransmitter with important roles in normal behavioral processes

and has been implicated in the pathogenesis of psychopathological

conditions such as depression, anxiety, and addiction, it is a prime

target for investigation in behavioral neurogenetics. The serotonin

transporter (SERT) is a key brain protein that regulates the amount

of serotonin that can activate the receptor. It is becoming evident

that SERT interacts with brain-derived neurotrophic factor (BDNF), an

important modulator of dopaminergic, cholinergic, and serotonergic

neurons, which has been linked to memory function, activity, eating

behavior, depression and anxiety. The pivotal roles played by these two

brain molecules have resulted in the development of numerous mutant

animal models that have reduced function of SERT, BDNF, or both.

Interestingly, SERT � BDNF mutant mice show numerous different

behavioral phenotypes that are distinct from either SERT mutant of
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BDNF mutants alone, displaying phenotypes that are highly relevant

to human clinical scenarios and bringing them added validity. This

chapter will provide data from numerous experiments utilizing these

rodent models, and will explain their relevance and validity for research

into the genetics of neuropsychiatric disorders.

introduction

Various genetic animal models are used in neuroscience research

for screening psychotropic drugs, testing neurobiological hypotheses

and finding candidate genes for stress-related brain disorders (Crawley,

1999; Kaiser et al., 2001; Kalueff and Tuohimaa, 2004; Van Meer and

Raber., 2005; Vetter et al., 2002). Mounting data indicate that many

brain disorders represent overlapping pathogenetic pathways with

common genetic determinants and clinical manifestations (Kalueff

and Nutt, 1996; Kalueff and Tuohimaa, 2004; Kalueff et al., 2007b),

raising the possibility that several distinct but interacting domains

may contribute to clinical and experimental phenotypes. This also

implies that a closer in-depth analysis of different domains may stimu-

late new, clinically relevant genetic experimental modeling of neu-

ropsychiatric disorders. This chapter will focus on two key brain

molecules – serotonin transporter (SERT) and brain-derived neuro-

trophic factor (BDNF) – that have been implicated in multiple neuro-

psychiatric disorders, and discusses how their genetic animal models

may optimize further experimental research in this field.

Serotonin (5-HT) is a key brain neurotransmitter (Adayev et al.,

2005; Aghajanian, 1990; Aghajanian and Marek, 1997, 1999; Lauder,

1990; Turlejski, 1996; Whitaker-Azmitia, 1991, 2001). Clusters of seroto-

nergic cell bodies are located along the midline of the brain stem

known as the raphe nuclei, and their axonal projections are distributed

throughout the central nervous system (CNS). The dorsal and median

raphe nuclei send their projections to diverse regions including the

cortex, hippocampus, limbic structure, striatum, thalamus, midbrain,

and hypothalamus. Although found in only a small percentage (about

1–2%) of neurons in the brain, 5-HT is an important morphogenetic

contributor to the developing brain (Ansorge et al., 2004; Bonnin

et al., 2006, 2007; Vitalis et al., 2007; Vitalis and Parnavelas, 2003;

Whitaker-Azmitia, 1999, 2001; Whitaker-Azmitia et al., 1996). Disrupted

signaling of this neurotransmitter during early development produces

enduring changes in the morphology and function of the CNS (Gross

and Hen, 2004a, 2004b; Gross et al., 2002).
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Altered developmental and postnatal 5-HT effects numerous

facets of cognition and emotional regulation (Graeff et al., 1996; Gross

and Hen, 2004a, 2004b; Gross et al., 2000, 2002; Lucki, 1998; Owens and

Nemeroff, 1994), as evidenced by its implication in the pathogenesis

of many brain disorders such as anxiety, depression, mania, addiction,

schizophrenia, autism and obsessive compulsive disorder (OCD) (Firk

and Markus, 2007; Kennedy et al., 2003; Lesch, 2005a, 2005b; Lesch and

Mossner, 2006; Lesch et al., 2003; Meyer, 2007; Senkowski et al., 2003;

Shiah and Yatham, 2000; Yatham et al., 2000).

The uptake of synaptic 5-HT into nerve terminals – the most

important mechanism of serotonergic regulation – is mediated by SERT,

a high-affinity plasma membrane serotonin transporter (Lesch, 2005b;

Murphy et al., 2001, 2003, 2004; Rudnick, 2006a, 2006b; Zhou et al., 2002).

In humans, a common SERT polymorphism in the promoter region,

a variable-number tandem repeat in intron 2, and a coding region

mutation have been reported to be associated with a variety of neuro-

psychiatric diseases, including anxiety, autism, OCD and depression

(Firk and Markus, 2007; Glatt et al., 2001; Glatt and Reus, 2003; Hariri

and Holmes, 2006; Holmes and Hariri, 2003; Kalueff et al., 2007a;

Murphy et al., 2003; Ozaki et al., 2003).

Previous studies have demonstrated that BDNF is the most

abundant brain neurotrophic factor and that reduced expression of

BDNF in mice can affect brain synaptic vesicle function, synaptic

plasticity, and can lead to specific alterations in hippocampus-based

spatial learning as well as hypothalamus-regulated eating behavior

and motor activity (Angelucci et al., 2000, 2005; Berton et al., 2006;

Bonhoeffer, 1996; Kernie et al., 2000; Ren-Patterson et al., 2006). In addi-

tion, loss of the BDNF receptor, TrkB, leads to more severe changes

through neuronal loss and cortical degenerative abnormalities (Vitalis

et al., 2002; Xu et al., 2000).

Similarly, decreased serum levels of BDNF have been found in

patients under stress and in patients with mood disorders (Karege

et al., 2002; Licinio and Wong, 2002; Martinowich and Lu, 2008;

Martinowich et al., 2007; Nestler et al., 2002). A recent study found that

only the BDNF gene was identified as a potential risk gene out of 76

candidate genes studied in a bipolar disorder sample (Sklar et al., 2002),

supporting the hypothesis that BDNF plays a primary role in mood

disorders. In addition, a val66met BDNF human gene variant has been

shown to be associated with changes in memory and abnormal hippo-

campal activation assessed by fMRI (Egan et al., 2003). This variant of the

BDNF gene is also associated with several neuropsychiatric disorders
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(Hall et al., 2003; Kim et al., 2007; Lohoff et al., 2005; Neves-Pereira et al.,

2005). BDNF has also been found to directly affect the brain serotonergic

system. For example, intracortically administered BDNF produces local-

ized increases in serotonin axon density (Mamounas et al., 1995). Several

cultured cell models indicate that BDNF enhances the differentiation of

a serotonergic phenotype (Eaton and Whittemore, 1996; Galter and

Unsicker, 2000a, 2000b; Rumajogee et al., 2002, 2004, 2005, 2006). BDNF

also modulates serotonin transporter (SERT) function in cultured cell

lines (Mossner et al., 2000; Ren-Patterson et al., 2005b). Pre-administration

of BDNF prevents the formation of serotonergic axonal lesions produced

by the serotonin neurotoxin parachloramphetamine (Mamounas et al.,

1995, 2000). Moreover, abnormal thalamocortical axon overgrowth, which

is a consequence of excess serotonin availability during certain stages

of brain development in mice with a targeted deletion of the MAO-A gene,

is exacerbated by inter-breeding these MAO-A gene-deleted mice with

mice lacking the BDNF receptor, TrkB (Vitalis et al., 2002).

To extend these studies of brain plasticity and of specific inter-

actions between BDNF and the serotonergic and dopaminergic systems

(Berton et al., 2006; Lyons et al., 1999; Ren-Patterson et al., 2005a), we

investigated whether an endogenous BDNF gene difference might play a

role in the consequences of a serotonin transporter deficit found in

SERT knock-out mice.

Notably, BDNF is an important modulator of dopaminergic,

cholinergic, and serotonergic neurons, implicated in synaptic vesicle

function and synaptic plasticity. Leading to specific alterations in

behaviors, including memory, activity, eating behavior, depression

and anxiety (Aloe et al., 2000; Angelucci et al., 2000, 2004, 2005; Bartoletti

et al., 2002; Berton et al., 2006; Bonhoeffer, 1996; Chourbaji et al., 2004;

Kernie et al., 2000; Kuipers and Bramham, 2006; McAllister, 1999; Mini-

chiello et al., 1999; Murphy et al., 2004; Pozzo-Miller et al., 1999; Yamada

et al., 2002). Prominent physiological changes have been observed in a

double SERT�/� BDNFþ/� knock-out mouse model (Ren-Patterson et al.,

2005a, 2005b, 2006), strongly supporting the importance of SERT–BDNF

interactions.

loss of bdnf single gene exacerbates 5 -ht

deficiencies in male sert � bdnf (sb ) double-mutant

mice, but not in female mice

Serotonin (5-HT) concentrations in the four brain regions for both

genders and four genotypes (SB ¼ SERTþ/þ BDNFþ/þ; Sb ¼ SERTþ/þ
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BDNFþ/�; sB ¼ SERT�/� BDNFþ/þ; and sb ¼ SERT�/� BDNFþ/�) are

presented in Figure 9.1A–D. Significant gender � genotype interactions

were found in hippocampus (F3,46¼4.2, p<0.01) and striatum (F3,46¼4.6,

p<0.006). Significant genotype-related 5-HT reductions were found in sB

and sb mice relative to the SB controls in multiple brain regions:

hippocampus (F3,46¼189.9, p<0.001), striatum (F3,46¼177.3, p<0.001),

hypothalamus (F3,46¼224.5, p<0.001) and brain stem (F3,46¼200.5,

p<0.001). Post-hoc analyses revealed that significant serotonin reduc-

tions of 37% in hippocampus (p<0.01) and 43% in hypothalamus

(p<0.02) were observed in male sb double-mutant mice compared to

male sB SERT knockout mice (Ren-Patterson et al., 2005a). In contrast,
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Figure 9.1 5-HT concentrations in different brain regions were

significantly reduced (pg/mg protein, mean � SEM, n ¼ 5–6) in sb

double-mutant mice compared to SB and Sb mice (SB ¼ SERTþ/þ BDNFþ/þ;

Sb ¼ SERTþ/þ BDNFþ/�; sB ¼ SERT�/� BDNFþ/þ; and sb ¼ SERT�/�
BDNFþ/� mice). Hippocampus �79%, Hypothalamus �80%, Brain

stem �79%, Striatum �69%. A significant further serotonin reduction of

37% in hippocampus and 43% in hypothalamus was observed in sb mice

compared to sB mice. In addition, male compared to female sb mice had

a significant reduction of 5-HT concentrations in hippocampus and

striatum, {{{p<0.001, in hypothalamus, {{p<0.01, in brain stem, {p<0.04.

Furthermore, both genders of sB mice had significant reductions in all

four brain regions (***p<0.001) relative to SB mice. Sb mice compared to SB

controls had significant reductions of 5-HT in only the hippocampus

(}}p<0.008), but not in other brain regions.
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female sb mice had no further significant reductions in serotonin

concentrations compared to female sB mice. Serotonin concentrations

in these female sb mice differed significantly from male sb mice in all

four brain regions studied (Figure 9.1).

dopamine and metabolites show gender-based

differences in sert � bdnf (sb ) double -mutant

mice in striatum

A significant gender � genotype interaction for dopamine con-

centrations was found in striatum (F3,46¼5.07, p<0.004). Significant

genotype-related reductions in dopamine were observed (F3,46¼3.0,

p<0.04). While male mice had significant reductions of dopamine of

32% (Figure 9.2) relative to SB mice (p<0.001) and Sb mice (p<0.001), and

of 25% relative to sB mice (p<0.004), female sb mice had no reductions

of dopamine in striatum. Thus, male sb mice compared to sb female

mice had significantly reduced striatal dopamine (p<0.001). Dopamine

concentrations were unaltered in other brain regions.

Furthermore, both DOPAC (a primary dopamine metabolite) and

HVA (a major catecholamine metabolite) concentrations in striatum

were altered, with significant gender � genotype interactions: DOPAC

(F3,46¼4.2, p<0.01); HVA (F3,46¼4.1, p<0.01). For both DOPAC (F3,46¼8.2,

p<0.001) and HVA (F3,46¼12.7, p<0.001), significant reductions were

observed only in male sb relative to male SB mice, but not in female

mice. Significant genotype-related DOPAC and HVA reductions were

found in sB (p<0.004) and sb (p<0.001) mice relative to the Sb controls.

However, significant gender differences were only found in double-

mutant mice: both DOPAC and HVA (p<0.001) were significantly differ-

ent in post-hoc comparisons of sb male with sb female mice.

anxiet y -l ike behaviors are gender -dependent in

sert � bdnf -deficient male, but not female, mice

Behavioral changes observed in a double sb (SERT�/� BDNFþ/�)

knock-out mouse model further strongly support the importance of

SERT–BDNF interactions. Several results based on this model reflect

SERT–BDNF interplay and illustrate the utility of dissecting individual

domains and studying them as a system of interacting endophenotypes.

For example, the elevated plus-maze (EPM) data (Figure 9.3 A–C) show a

significant gender � genotype interaction for the percentage of time

the animal spent in the open arm areas (F3,91¼2.67, p<0.05). While male

275SERT � BDNF interactions in brain disorders
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sb mice spent less time on the open arms than male SB mice (p<0.006;

Figure 9.4A) and also made fewer open entries compared to SB mice

(F3,91¼5.35, p<0.001; Figure 9.4B), female sb double-mutant mice

showed no differences from their littermate controls on either open

arm time or open arm entries percentages. Thus, there were significant

differences between the male and female sb mice on percent open arm

time (p<0.001), but not on open arms entries.
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Figure 9.2 Dopamine (DA) concentrations were significantly reduced by

32% (***p<0.0001) only in male sb double-mutant mice compared to SB, Sb,

and sB mice. DA concentrations in female sb mice were significantly

different compared to sb male mice ({{{p<0.0004). DOPAC and HVA

concentrations were also significantly reduced by 32% (***p<0.001) and

30% (***p<0.001) only in male sb mice compared to SB, Sb, and sB mice.

In contrast, DOPAC ({{{p<0.001) and HVA ({{p<0.01) concentrations in

female sb mice were significantly different compared to male sb mice.
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Figure 9.3 Male sb double-mutant mice showed heightened anxiety-like

behavior in the elevated plus-maze test relative to SB controls. sb

double-mutant male mice spent less time on the open arms (**p<0.006)

and made fewer open arm entries (*p<0.003) compared to SB or Sb

controls. Female sb double-mutant mice were not different from their

littermate controls, but female sb double mutant mice were significantly

different from male sb mice in percent open time ({{p<0.001). Male sb

double-mutant mice spent more time on the closed arm than male SB

mice (p<0.05). In addition, sb male mice were significantly different from

female sb mice (p<0.02). Data (also in Figures 9.4–9.5) are means � S.E.M.,

n ¼ 12–15 males and n ¼ 10–12 females per genotype.
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On the other hand, as can be seen in Figure 9.4C, a significant

gender difference was found for percentage of time spent in the closed

arm (F1,91¼4.5, p<0.04), but no genotype or gender � genotype inter-

action was found. Thus, male sb mice spent more time on the closed

arm than female sb mice (p<0.01). For the closed arm entries endpoint,
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Figure 9.4 Reductions of 5-HT and BDNF affect development of neuronal

dendritic branches in sb mice. The morphology of brain neuronal

hippocampal near dentrate gyrus dentrities and spines was evaluated in

20 fields. (Scale bars ¼ 10mm). The quantity of dendrites in brain sections

with Golgi impregnation. Both genders had significant reductions in

sb mice (p<0.0001) compared to SB mice using two-way ANOVA test

(see legend for Figure 9.3 for details).
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a significant genotype difference was found (F3,91¼7.71, p<0.001), but

no gender or gender � genotype interaction. Thus sb mice of both

genders made significantly fewer closed arm entries than SB mice

(p<0.01). In contrast, female sb double-mutant mice showed no differ-

ences from their littermate controls on either closed arm time or closed

arm entries percentages.

targeting sert- and bdnf -mediated

brain disorders

Figure 9.5 compares several altered domains in SERT�/� and

BDNFþ/� gene-targeted mice, outlining their possible interplay in

SERT�/� BDNFþ/� double-mutant mice. For example, SERT�/�
BDNFþ/� mutant mouse data show that reduced BDNF availability

during development exaggerates the consequences of absent SERT
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Figure 9.5 Domain architectonics in 5-HT transporter knock-out

(SERT�/�), brain-derived neurotrophic factor heterozygous knock-out

(BDNF þ/�), and double mutant (SERT�/� BDNFþ/�) mice. Note that only

selected disordered domains are presented (gray) for each genetic model

(", increased, #, decreased profile). Exacerbation of the respective known

domains in the double knock-out (SERT�/� BDNFþ/�) model, as a result

of genetic interactions, is marked with black color and double arrows

(see legend for Figure 9.3 for details).
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function, leading to increased anxiety and obesity (Murphy et al., 2003;

Ren-Patterson et al., 2005a). Interestingly, using neonatal models,

Garoflos et al. (2005) examined the effects of early developmental experi-

ence on spatial learning and memory, food intake, hippocampal

glucocorticoid, mineralocorticoid and 5-HT1A receptors, and BDNF.

They found that neonatal handling has a beneficial effect in the male

mice, improving their cognitive ability, accompanied by increased

hippocampal gluco/mineralocorticoid receptors ratio and BDNF.

Another pathway causing the anti-stress effects of handling may involve

upregulated 5-HT1A receptors that prevent stress-induced hyperphagia,

obesity and resistance to leptin (Garoflos et al., 2005; Panagiotaropoulos

et al., 2004).

These findings are consistent with our observations that SERT �
BDNF double-mutant mice have larger stress-induced increases in

plasma adrenocorticotropic hormone (than any single-knock-out mice)

(Murphy et al., 2003), confirming that the multiple gene interactions

affect many systems (including the neuroendocrine system) co-modulating

the animal behavioral and physiological phenotypes. Importantly, BDNF,

SERT and 5-HT are present not only in the brain, but also in peripheral

tissues involved in metabolic functions and responses to stress (Tjurmina

et al., 2002; Tonra et al., 1999). Thus, both central and peripheral 5-HT/BDNF-

mediated mechanisms are affected in the double-mutant SERT � BDNF

mice. One of the mechanisms for this may be mediated by corticotropin-

releasing hormone that originates from hypothalamus paraventricular

nucleus, which in turn results in the release of adrenocorticotropic

hormone from the pituitary into general circulation. Furthermore, stress-

induced obesity (Bjorntorp, 2001; Bjorntorp and Rosmond, 2000; Rosmond

et al., 1998) is believed to be associated with glucocorticoid-induced

resistance to leptin (Solano and Jacobson, 1999), although other import-

ant neuroendocrine mechanisms (Dutton et al., 2006; Kuo et al., 2007a,

2007b), potentially associated with 5-HT, SERT and BDNF, have recently

been reported.

As BDNF plays a central role in the development and plasticity of

neuronal circuits in the central nervous system, analysis of neuronal

morphology showed that hypothalamus and hippocampus neurons

exhibited 25–30% reductions in dendrites (especially in multiple, highly

ordered dendrites branches) in double-mutant mice compared with

BDNFþ/� mice (Figure 9.4). These morphological changes imply that

the deletion of BDNF � SERT genes significantly affects the develop-

ment and growth of dendrites – the structural elements that are crucial

for synaptogenesis. Furthermore, a more focused examination of the
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dendrites and spines in the hippocampus near the dentate gyrus in

female and male sb mice compared to SB mice (Figure 9.4). Our results

revealed a significant 20–23% genotype-related reduction in spines rela-

tive to SB wildtype. Also, these double-mutant mice showed poorer

performance in the radial arm maze (compared with any single-mutant

mice; R. Ren-Patterson et al., unpublished data). This may indicate aber-

rant hippocampal memory caused by irregular hippocampal morph-

ology (but also does not exclude other hippocampal abnormalities,

such as impaired navigation and exploration). Clearly, a further dissec-

tion of diverse domains may be possible in this model, elucidating the

role of the two genes in their regulation and co-modulation.

concluding remarks

In addition to the fundamental roles that SERT and BDNF play

independently of each other, it is clear that SERT and BDNF interact at

numerous levels and play an integral part in the regulation of physio-

logical and behavioral functions as seen in both clinical and experi-

mental studies (Berton et al., 2006; Kaufman et al., 2006; Ren-Patterson

et al., 2005a, 2005b, 2006). This evidence, as summarized in this chapter,

effectively demonstrates that this related involvement allows for the

effective co-modulation of a range of neural mechanisms. However,

genetic interactions also play an active part in this regulatory process,

adding another interesting dimension to the interplay between SERT

and BDNF. The elucidation of such mechanisms offers encouraging

potential for novel avenues of investigation into the pathogenesis of

common and devastating brain maladies. With the possibilities for

inventive exploration, there arises the obligation for developing rele-

vant animal models that foster treatment-oriented research. Given the

importance that genetic interactions have on the development and

perpetuation of many disorders, genetic models based on mutant or

transgenic mice are ideal candidates for this task. As clearly summar-

ized in this chapter, SERT, BDNF, and SERT � BDNF mutant mice

emerge as particularly promising models pertinent to many prevalent

human disorders.
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