Chapter 22

Assessing Startle Responses and Their Habituation in Adult Zebrafish	2 3
Simon Chanin*, Caroline Fryar*, Danielle Varga*, Jolia Raymond,	4
Evan Kyzar, Joseph Enriquez, Sidarth Bagawandoss,	5
Siddharth Gaikwad, Andrew Roth, Mimi Pham, Ivan Zapolsky,	6
Indya Bruce, Jonathan Hester, Jeremy Green, Daniel Desmond,	7
Adam Michael Stewart, and Allan V. Kalueff	8
Abstract	9
	Ū
Zebrafish is rapidly becoming a popular model species for neurobehavioral and psychopharmacological research. The startle response represents the instinctive, evolutionarily conserved reaction of an organism	10 11
to novel unexpected and/or aversive stimuli. While startle testing is a well-established assay to study anxiety-	12
like behaviors in different species, screening of the startle response and its habituation in zebrafish is also	13
an important direction of translational biomedical research. Complementing rich literature on zebrafish startle, this chapter outlines a brief and simple protocol to assess the tapping-induced startle response and	14 15
its inter- and intra-trial habituation in adult zebrafish.	16
Key words: Adult zebrafish, Startle response, Within-trial (intra-session) habituation, Between-trial (inter-session) habituation, Anxiety, Behavioral testing, Neurophenotyping	17 18
1. Introduction	19
The startle response is an autonomous reflex evoked by a sudden	20
exposure to unexpected, most commonly aversive stimuli $(1, 2)$.	21
It represents an evolutionarily conserved instinctive behavior which	22
is observed in multiple species including humans $(3-10)$ and	23
enables an organism to quickly react to perceived threats, avoid	24
harm, and initiate adaptive fight-or-flight responses (11).	25
* Simon Chanin, Caroline Fryar, and Danielle Varga contributed equally to this manuscript.	

Allan V. Kalueff and Adam Michael Stewart (eds.), Zebrafish Protocols for Neurobehavioral Research, Neuromethods, vol. 66, DOI 10.1007/978-1-61779-597-8_22, © Springer Science+Business Media New York 2012

S. Chanin et al.

26	The startle assays are commonly used in neurobehavioral and
27	psychopharmacological research. While anxiolytic drugs generally
28	reduce startle responses, anxiogenic agents typically increase startle
29	responses (3, 12, 13). Furthermore, startle response is based on
30	cognitive processing of sensory information, which is highly relevant
31	to modeling cognitive deficits, especially psychotic-like pathogen-
32	esis $(12, 13)$. For example, antipsychotic drugs commonly diminish
33	and psychotogenic agents augment startle responses (9, 14–16).
34	Startle responses have previously been examined in fish species,
35	including adult $(17-19)$ and larval zebrafish (Table 1) $(20, 21)$. In
36	fish, startling stimuli evoke a typical stereotyped "fast start" behavior
37	consisting of a rapid turn and swimming with high velocity away
38	from the stimulus (22). This chapter describes a simple protocol
39	used in our laboratory to assess startle response in adult zebrafish.
40	Habituation of the startle response is another important brain
41	phenomenon manifested in the reduction of behavioral responses
42	to startling stimuli over time $(2, 10, 23, 24)$. Like any other type
43	of habituation, startle habituation reflects cognitive functions and
44	can be assessed in zebrafish in conjunction with the present protocol
45	using both inter- and intra-trial paradigms (see a related chapter on
46	habituation to novelty in this book).
47	Importantly, there are some differences in behavioral endpoints
48	in startle studies between larval and adult zebrafish (e.g., (25)).
49	Table 1 summarizes some endpoints used for both types of models.
50	Note that the larval fish startle is generally shorter (starting <15 ms
51	after the stimulus and lasting less than 100 ms, depending on the
52	stimulus) compared to adult zebrafish (showing a longer latency
53	and duration of their startle response, Fig. 2; (25)). The larval fish
54	behavior is also more prominently expressed in turning endpoints

t1.1 **Table 1**

t1.2 Example of startle assays in adult and larval zebrafish reported in the literature

t1.3	Model	Endpoints	References
t1.4	Adult zebrafish		
t1.5	Tapping-induced stimulation	Distance traveled, swim velocity (m/s)	(17)
t1.6	Tapping-induced stimulation	% Animals showing avoidance	(19)
t1.7	Larval zebrafish		
t1.8	Acoustic stimulation	Distance traveled (m)	(37)
t1.9	Mild electrical stimulation	Heart rate (bpm)	(20)
t1.10	Vibrational stimulation	Bend angle (°) and maximum angular	(18)
t1.11		velocity (°/ms)	
t1.12		Distance traveled (pixels)	(28)
t1.13	Visual stimulation	Swim speed (mm/min)	(27)
t1.14		Distance traveled (pixels)	(28)

t1.15 The method of startle and endpoints measured vary in the experiments (see references listed for details),

t1.16 and the behavior of both adult and larval zebrafish can be assessed

22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

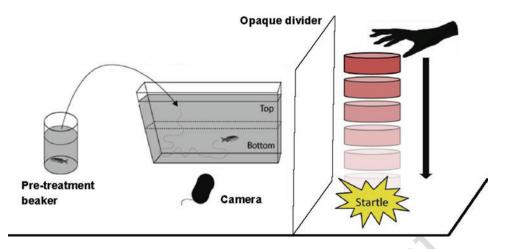


Fig. 1. Experimental set-up to assess tapping-induced startle responses in adult zebrafish. The novel tank set up with a side-view camera, a pretreatment beaker to hold fish prior to testing, and the startle stimulus, separated from the tank by a vertical plastic opaque divider.

(e.g., characteristics of body curvature (18, 25, 26)) for which the 55 top-view position of the video-camera, traditionally used in larval 56 studies, seems to be appropriate (see (18, 22, 25) for detailed 57 review of larval zebrafish startle). 58

However, the focus of this chapter is on behavioral character-59 ization of *adult* zebrafish startle responses. Although they can also 60 be recorded using the top-view camera (e.g., (17)), we developed 61 a sensitive method based on video-recording of startle in the novel 62 tank test using the *side-view* camera (Fig. 1) and examining multiple 63 sensitive locomotory endpoints (Table 1, Fig. 2). Furthermore, using 64 shallow arenas (e.g., Petri dishes) may be ideal for testing startle in 65 small organisms, such as larval fish (whose behavior is less complex) 66 when compared and occurs in lateral dimensions (25, 27, 28)). 67 Behavioral responses to startle stimuli in *adult* zebrafish are more 68 complex in terms of their dimensionality, occurring in both hori-69 zontal and vertical planes. Therefore, deeper tanks (such as the 70 novel tank test used here, Fig. 1) may be more useful, to enable a 71 better focus on adult zebrafish locomotion and their sensitive vertical 72 behavior. Utilizing a side-view camera and deeper testing tanks, as 73 described in this protocol, provides a valid and reliable method to 74 assess startle response and its habituation in adult zebrafish. 75

2. Materials and Methods

2.1. Animal Housing

Adult zebrafish (e.g., 3–5 months old; ~50:50 male:female ratio) 77 can be raised in-house or obtained from a commercial distributor. 78 The animals should be given sufficient time (e.g., 14 days) to 79

this figure will be printed in b/w

76

S. Chanin et al.

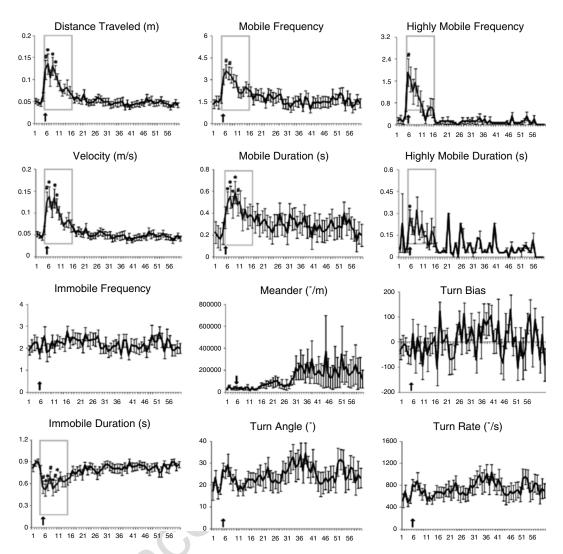


Fig. 2. Examples of intra-session habituation of startle responses in adult zebrafish exposed to a single startle stimulus (trial 1). Startle was applied at second 5, and is denoted by the *arrows. Horizontal axis* represents time (s). *P < 0.05, *P = 0.05-0.1, paired *U*-test with Bonferroni correction for each poststartle second vs. prestartle baseline activity (at second 4).

80 81 82 83 84 85		acclimate to the laboratory environment, and can be housed in groups of 20–30 fish per 40-L tank. The tanks can be filled with filtered facility water maintained at $25-27^{\circ}$ C and a pH of 7.0–8.0. Illumination (e.g., 1,000–1,100 lux) can be provided by ceiling mounted fluorescent light tubes on a 12:12-h (or 14:10-h) cycle according to the standards of zebrafish care protocols (e.g., (2)).
86 87 88	2.2. Apparatus	While the exact apparatuses to assess zebrafish startle can vary, the standard small novel tank (24) described in several chapters of this book will suffice for capturing phenotypically robust startle

22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

responses. In this experimental setup, the 1.5-L trapezoidal novel 89 tank (15 cm height×7 cm width×28 cm top×23 cm bottom 90 length; Aquatic Habitats, Apopka, FL) faces the video-analysis 91 web-camera and is filled with room temperature filtered facility 92 water (Fig. 1). 93

2.3. Experimental Setup and Materials

- 1 Roll Scotch masking tape (e.g., 8–12 cm in diameter) weighing approximately 180 g (locally purchased).
 95
- Opaque plastic screen (e.g., 50×50 cm, 0.5 cm thick, positioned 96 (as in Fig. 1)) between the tank and the startle stimulus. 97
- 1.5-L novel tank (Aquatic Habitats, Apopka, FL) as described 98 above. 99
- Video-tracking software (e.g., Ethovision XT7, Noldus IT, 100 Wageningen, The Netherlands).
 101
- Digital timing device (e.g., Fisher Scientific, Pittsburgh, PA). 102

The stimulus used in our laboratory to evoke a startle response 103 from adult zebrafish is produced with a roll of Scotch masking tape 104 described above. The object is raised to the height of the tank 105 (15 cm) and released by hand onto a hard, flat surface on which 106 the novel tanks rested, creating both an acoustic and vibrational 107 stimulus that evoked an overt startle response in fish (Fig. 1). Note 108 that other standardized stimuli to evoke a startle may include 109 releasing a rubber hammer from a standard height onto a flat surface, 110 or utilizing any other vibrational "tapping" stimulus that could 111 adequately alert the zebrafish. 112

2.4. Computer-Aided Analysis of recorded trials can be performed on- or off-line using 113 commercially available video-tracking software (e.g., Ethovision Analysis of Data 114 XT7, Noldus IT (29-32)). Simultaneously recording two or more 115 tanks can reduce experiment duration without changing the stimu-116 lus, as long as it is administered uniformly to all zebrafish tested. 117 Video-recording and its settings can be similar to those used in 118 other zebrafish swimming behavioral tracking protocols (33, 34). 119 Note that the location of the camera (side or top) could influence 120 the results of the experiment. For example, many zebrafish startle 121 studies use open-field-like tanks and top-view cameras (17, 27), 122 especially common in high-throughput larval assays (17, 21). 123 However, our own experiments in adult zebrafish showed that 124 startled zebrafish swim very actively in a vertical direction immedi-125 ately after the tapping stimulation. While a camera oriented on the 126 top of the tank would also record the startle response (similar to 127 startle assays in larval zebrafish), a side-view camera used here 128 (Fig. 1) may be best able to capture adult animal movements 129 occurring mostly in a vertical plane. 130

S. Chanin et al.

¹³¹ **3. Procedure**

132	3.1. Experimental	As already mentioned, due to the broad nature of a startle response,
133	Protocol	various procedures can elicit a startle response in adult zebrafish,
134		including electrical, visual, or tapping-induced stimuli (Table 1).
135		An easy, inexpensive, and practical stimulus to use in startle studies
136		in zebrafish is tapping, such as tapping on the novel tank or the
137		table on which the tank rests. The following protocol can be used
138		to produce a standardized physical stimulus to evoke a startle
139		response in the zebrafish.
140		1. Collect naïve zebrafish with a net (12–15 fish per group may
141		usually suffice, but animal numbers can be increased depend-
142		ing on the experimental task) and place them in a preexperi-
143		ment container filled with room temperature facility water for
144		acclimation for 1-2 h. Keep this container far away (e.g., in a
145		separate room) from the startle response testing area, so that
146		acoustic and vibrational stimuli do not interfere with the naive
147		animals (see troubleshooting notes further). If using a pretreat-
148		ment exposure to various drugs in the experiment, use a pre-
149		treatment container (e.g., 3-L plastic square opaque beaker) to
150		expose fish individually to drugs for a desired amount of time
151		prior to testing.
152		2. Following acclimation (and, if necessary, pretreatment), transfer
153		the zebrafish individually into the testing tank, and allow a
154		3-min acclimation period prior to the first startle session. At
155		the end of this acclimation period, begin recording the video.
156		Note that the acclimation period can be longer, if necessary,
157		depending on experimental design and baseline anxiety levels
158		of the specific zebrafish strain tested.
159		3. After the first 5 s of baseline video-recording, produce the
160		stimulus (tapping as described above) and continue video-
161		recording of fish activity for 1 min.
162		4. If assessing habituation of startle response, repeat this stimulus
163		once every minute for 10 min with continuous video-recording,
164		and stop recording after all trials are completed.
165	3.2. Habituation	Habituation is the attenuation of responses after repeated expo-
166		sures to the same stimulus and can be tested in zebrafish to assess
167		their ability to adapt to a novel environment (24). Analyzing
168		zebrafish habituation to a startle stimulus is highly relevant to
169		studying anxiety-related and cognitive phenotypes. The initial
170		reaction to the startle stimulus represents various anxiety-like
171		avoidance behaviors, such as increased distance traveled, higher
172		velocity, and a characteristic "fast start" behavior involving a rapid
173		turn away from the startle source (22) . In the period following the

22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

initial startle reaction, these anxiety-like behaviors gradually 174 decrease (as the fish demonstrates intra-session habituation to the 175 startle stimulus, and the behavioral endpoints return to normal 176 prestartle levels; Fig. 2).

Repeated presentation of the startle stimulus (e.g., a series of 178 10 startles) targets another aspect of habituation in zebrafish-179 inter-session habituation. This type of habituation represents a 180 more gradual decrease in anxiety-like behaviors each time the 181 startle is evoked. Note that both intra-session and inter-session 182 habituation only occur for certain endpoints, and that some end-183 points show no habituation at all. For example, distance traveled or 184 velocity may habituate consistently after one startle production or 185 across many stimuli, while turn bias or meander is likely to show no 186 habituation (Figs. 2 and 3). 187

200

3.3. Data Analysis Use the Mann–Whitney U-test (with or without Bonferroni correc-188 tion, where appropriate) for comparing two groups (Student's 189 *t*-test can also be used for normally distributed data). For more 190 than two groups, use analysis of variance (ANOVA), followed by 191 an appropriate post hoc test (e.g., Tukey, Dunn, Newman-Keuls, 192 or Dunnet test). A general n-way ANOVA can be used, with common 193 factors being treatment, dose, sex, strain, time, trial, or age (34). 194 To assess startle habituation, use post-hoc tests to compare baseline 195 and startle-evoked activity (e.g., prestartle second 4 vs. each indi-196 vidual poststartle second of the test for intra-session habituation, 197 Fig. 2; or Trial 1 with each individual subsequent trial for inter-198 session habituation, Fig. 3). 199

4. Typical Results

	The results for the startle experiment using our protocol are generally	201
	robust and highly reproducible (see Fig. 2 for typical results for the	202
	startle response assay and its intra-session habituation, and Fig. 3	203
	for its inter-session habituation). Based on our experience, the	204
	startle response can be observed in the critical 10-15-s window	205
	following the startle stimulus (Fig. 2). Per-second distribution of	206
	startle-related endpoints over the period of 60 s post-stimulus	207
	reflects inter-session habituation (Fig. 2), while inter-trial habitua-	208
	tion can be assessed by measuring startle behaviors during the 15-s	209
	window and comparing their change across all ten 15-s post-startle	210
	windows (Fig. 3).	211
4.1. Startle Response	Our protocol yields phenotypically robust startle behaviors that	212
and Its Dynamics	can be recorded from the side view capturing numerous sensitive	213
-	endpoints (Table 2) using video-tracking software (Fig. 1).	214

S. Chanin et al.

Fig. 3. Representative examples of inter-session habituation of some startle responses observed in adult zebrafish exposed to tapping-induced startle stimulus every 60 s for a period of 10 min (total 10 trials). Horizontal axis represents consecutive trials (each bar represents cumulative scores generated for the 15-s post-startle window for each trial). *P < 0.01, **P<0.005, ***P<0.0005, paired U-test (trial 10 vs. trial 1) with Bonferroni correction.

215	Data analysis revealed that distance traveled, velocity, and highly
216	mobile frequency all display high sensitivity to the startle behavior.
217	As shown in Fig. 2, within the 10-15-s period after the startle
218	stimulus, these endpoints show a marked change followed by its
219	gradual return to normal. When the aversive stimulus is encountered
220	by zebrafish, the animal attempts to escape or avoid it, leading to
221	rapid swimming away from the source of the startle. This behavior
222	is logically reflected in altered distance traveled, highly mobile
223	frequency, and velocity, which all show marked increase upon
224	presentation of a startle stimulus followed by a relatively fast return
225	to normal levels (Fig. 2).

22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

Table 2	t2.1
A brief summary of behavioral endpoints used in startle analysis and their	t2.2
habituation	t2.3

Habituation

Endpoint	Explanation	Startle	Intra-session	Inter-session
Distance traveled, m	Total distance the zebrafish traveled within the novel tank	+	+	+
Velocity, m/s	Distance traveled by the subject per unit time (s)	+	+	+
Turn angle, °	Total turning angle between consecutive frames (recorded at 30 fps)	-	-	+
Turn rate (absolute angular velocity)	Absolute change in direction of movement between consecutive frames (recorded at 30 fps) calculated per unit time (s)	-	-	+
Turn bias (relative angular velocity)	Relative change in direction of body between two consecutive frames calculated between consecutive frames (recorded at 30 fps) per unit time (s)	-	-	+
Meander, °/m	The absolute change in direction of movement of a subject relative to the distance traveled	-	-	+
Highly mobile frequency	Number of times the subject's body area is displaced by >80% between frames	+	+	+
Highly mobile duration, s	Total time spent highly mobile locomotion	+	+	+
Mobile frequency	Number of times the subject's body area is displaced by 20–80% between frames	+	+	+
Mobile duration, s	Total time spent mobile	+	+	+
Immobile frequency	Number of times the subject's body area is displaced by <20% between frames	-	-	+
Immobile duration, s	Total time spent immobile	+	+	+
Transitions to upper half	The number of crosses from the defined bottom portion to the top of the novel tank	-	-	
Time in upper half, s	Total time spent in top portion of the novel tank	-	-	

Plus sign indicates presence of startle behavior or its habituation, and minus sign denotes their absence. A brief definition for each endpoint outlines the behavior assessed, based on (33, 38). Note that some endpoints show good inter-session, but not intra-session, habituation. This difference merits further studies, but may reflect differential roles that long-term and short-term memory (as well as their modulation by anxiety-related mechanisms) plays in adult zebrafish startle responses t2.43

S. Chanin et al.

226 227 228	4.2. Habituation (Intra-/Inter-Session) of the Startle	In addition to startle, our protocol generates prominent results for the intra-session habituation of the startle response in zebrafish (Fig. 2), using an approach conceptually similar to screening habit-
229		uation in novel arenas (described in detail in a separate chapter by
230	Responses	Raymond et al. in this book). Furthermore, by measuring the data
231		for various endpoints within the 10-15-s window, and comparing
232		them across all 10 startle stimuli (1 startle every 60 s), zebrafish
233		inter-session habituation to aversive stimuli can also be evaluated
234		(Fig. 3). Our findings indicate that zebrafish display overt habitua-
235		tion of several startle-related behavioral endpoints, including distance
236		traveled and velocity, as well as highly mobile frequency and duration
237		(also see Table 2 for details). While all of these endpoints show a
238		marked increase within the 10-15-s window (intra-session habitu-
239		ation; Fig. 2), their gradual decrease over the course of 10 repeated
240		startle sessions demonstrates robust <i>inter-session</i> (between-trial)
241		habituation (Fig. 3).

242 5. Notes (Troubleshooting)

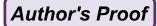
243	5.1. Standardization	An
244	of the Stimulus	res
245		res
246		tap
247		sur
248		Ho
249		sin
250		res
251		to
252		pro
253		the
254		per
255		Th
256		hu
257		of
258		not
259		fur
260		sive
261		(Fi
262		(Fi
263		(se
264	5.2. Avoiding	Pri
265	Preexposure	hol
266	to Stimulus	ear
267		acc
268		this

important and common methodological problem with startle earch is standardization of the stimulus used to evoke startle ponses. Based on our experience, releasing a roll of masking e onto a flat surface or striking a rubber hammer against a flat face both represent adequate stimuli to evoke startle responses. wever, their standardization may prove somewhat difficult, ce experimenters may handle the hammer or tape differently, ulting in varying stimuli. If using the roll of tape, it is important release it from a fixed height with the flat side facing down, to oduce the most consistent stimulus. The best way to standardize vibrational startle stimuli is to utilize a machine or computer to form a consistent and reproducible "tapping" action (e.g., (17)). e automated production of the "tapping" stimulus reduces man error due to a more standardized stimulus and less chance visual or acoustic interference, because the experimenters need t be in the immediate testing area during the experiment (see ther). Nevertheless, the automated method may be more expene, and therefore the simple mechanical method described here g. 1) may suffice to evoke sufficient startle responses in zebrafish gs. 2 and 3). Alternatively, consider using other types of stimuli e Table 1 for details) to evoke zebrafish startle.

Prior to the experiment, the fish must be netted and placed in a holding container (similar to the startle observation tank described earlier) filled with room temperature filtered facility water for an acclimation period of 1-2 h. Due to the nature of the startle stimulus, this holding container should be kept in a separate room for the

5.5. Optimizina

Animal Detection


22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

duration of the experiment. Note that placing the holding container269in the vicinity of the testing tanks (where the experiment is being270performed) risks prematurely exposing the naive fish to the stimulus.271This may lead to the situation when untested fish may begin to habituate to the stimulus, thus invalidating their naivety upon testing.273

Another possible problem in the startle testing procedure is visual 5.3. Minimizing 274 Testing Arena and acoustic interference in the arena of the experiment. The best 275 way to avoid this problem is to program a machine or computer for Interference 276 a consistent "tapping" (17, 26), so that the experimenters may be 277 absent from the vicinity of the testing tank. The presence of the 278 investigators in the testing area may startle the fish due to sudden 279 movements, approaching the novel tank during stimulus produc-280 tion, or due to acoustic disturbances in the vicinity. Another practical 281 way to reduce interference (especially if testing multiple zebrafish 282 simultaneously in the same area) is to place white or opaque screens 283 (see Fig. 1) around the novel tank to prevent the fish from being 284 visually startled by other fish being tested or by movements of the 285 experimenters in the testing vicinity (17). Additionally, since water 286 temperature interferes with zebrafish startle response (25), ensure 287 that the temperature of the water in the preexposure beaker and 288 the novel tank is maintained at 25–27°C. 289

While distance traveled or velocity after startle (Table 1) are consid-5.4. Selecting Correct 290 ered to be reliable startle endpoints (17, 35, 36), our data show Endpoints 291 that other computer-generated parameters may be useful to assess 292 startle in adult zebrafish, including mobile and highly mobile 293 frequencies and durations (Table 2). Upon receiving a startle stim-294 ulus, zebrafish show marked increase in all of these behaviors, 295 whereas several less sensitive endpoints (e.g., turn bias or meander) 296 would usually remain unaltered (Fig. 2). 297

> Assessing zebrafish startle endpoints is performed by video-tracking 298 software, which can be prone to misdetection of animals. This 299 problem is common for novel tank and similar paradigms, and various 300 ways to optimize the detection settings have been comprehensively 301 described in the literature (34). Furthermore, the amount of data 302 collected per trial can vary depending on the nature of the study. 303 For example, we typically use 10-30 frames per second (fps) video-304 recording and analyze data using 1-s time bins (Fig. 2). However, 305 using high-frame videography and/or shorter time bins may gen-306 erate more data points and represent fish startle phenotypes more 307 accurately. In the published literature, various fps ranges and 308 shorter time bins (e.g., (22, 25)) have been successfully applied to 309 zebrafish startle research. While such a degree of detail may not be 310 necessary for strong startle responses (e.g., as in (22) and our 311 studies presented in Figs. 2 and 3), less clear-cut and more subtle 312 startle phenotypes (e.g., if impaired under certain experimental 313 conditions) may require in-depth characterization using more 314

S. Chanin et al.

315 316	sensitive high-fps and/or shorter time bins, which can be optimized and adjusted to specific research needs.
 317 5.6. Additional 318 Endpoints 319 320 321 	It is also possible to expect that some additional endpoints, such as the "amplitude" of startle responses (e.g., difference between pre- and startle-induced behaviors, as a measure of startle magnitude) can be used to characterize startle responses. This possibility merits further studies and validation in adult zebrafish models.

322 6. Summary

323	This chapter provides a brief and simple protocol for assessing the
324	startle response and its habituation in adult zebrafish. The methods
325	described here are fast, simple, easily reproducible, and require
326	inexpensive materials. The endpoints measured are based on
327	computer analysis (rather than manual human recording), thereby
328	further standardizing the procedure, increasing its throughput and
329	making it less prone to bias. The specific endpoints selected here
330	are highly sensitive to startle stimuli and can be used in parallel to
331	characterize the startle response behavior in the adult zebrafish.
332	Another advantage of this protocol is that it tests both startle and
333	habituation in one experiment, adding an additional (cognitive)
334	domain to affective phenotypes traditionally assessed using startle
335	paradigms. Collectively, this increases the translational value of
336	adult zebrafish startle responses (17), with multiple applications
337	from screening genetic mutations and novel pharmacological
338	agents to modeling complex affective or psychotic disorders.

Acknowledgements 339

340 341

The study was supported by Tulane University Intramural funds, Tulane Neurophenotyping Platform (TNP), Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Pilot, and the 342 Newcomb Fellows grants. 343

References 344

- 1. Schachinger H (2003) The startle reaction in 345 emotion research. Praxis (Bern 1994) 346 347 92(38):1584-1586
- 2. Westerfield M (2007) The zebrafish book. 348 A guide for the laboratory use of zebrafish 349 350 (Danio rerio), 5th edn. University of Oregon 351 Press, Eugene, OR
- 3. Hale ME (2000) Startle responses of fish 352 without Mauthner neurons: escape behavior of 353 the lumpfish (Cyclopterus lumpus). Biol Bull 354 199(2):180-182 355

4. Plappert CF, Pilz PK (2001) The acoustic 356 startle response as an effective model for elu-357 cidating the effect of genes on the neural 358

22 Assessing Startle Responses and Their Habituation in Adult Zebrafish

mechanism of behavior in mice. Behav Brain
Res 125(1-2):183-188

- 361 5. Laming PR (1987) Behavioural arousal and its habituation in the squirrel fish, *Holocentrus*363 *rufus*: the role of the telecephalon. Behav
 364 Neural Biol 47(1):80–104
- Marino-Neto J, Sabbatini RM (1983) Discrete
 telencephalic lesions accelerate the habituation
 rate of behavioral arousal responses in Siamese
 fighting fish (*Betta splendens*). Braz J Med Biol
 Res 16(3):271–278
- 370 7. Maschke M et al (2000) Involvement of the
 371 human medial cerebellum in long-term habitu372 ation of the acoustic startle response. Exp Brain
 373 Res 133(3):359–367
- 8. Nieuwenhuijzen PH et al (2000) Modulation
 of the startle response during human gait.
 J Neurophysiol 84(1):65–74
- 377
 9. Hammer TB et al (2011) Stability of prepulse
 378 inhibition and habituation of the startle reflex in
 379 schizophrenia: a 6-year follow-up study of ini380 tially antipsychotic-naive, first-episode schizo381 phrenia patients. Int J Neuropsychopharmacol
 382 14(7):913–925
- 10. Quednow BB et al (2006) Normal prepulse
 inhibition and habituation of acoustic startle
 response in suicidal depressive patients without
 psychotic symptoms. J Affect Disord 92(2-3):
 299–303
- 11. Gotz T, Janik VM (2011) Repeated elicitation
 of the acoustic startle reflex leads to sensitisation
 in subsequent avoidance behaviour and induces
 fear conditioning. BMC Neurosci 12:30
- 12. Joordens RJ, Hijzen TH, Olivier B (1998) The
 anxiolytic effect on the fear-potentiated startle
 is not due to a non-specific disruption. Life Sci
 63(25):2227–2232
- 13. Hasenkamp W et al (2011) Lack of relationship
 between acoustic startle and cognitive variables
 in schizophrenia and control subjects. Psychiatry
 Res 187(3):324–328
- 400 14. Kumari V et al (2007) Startle gating in antipsy401 chotic-naive first episode schizophrenia
 402 patients: one ear is better than two. Psychiatry
 403 Res 151(1-2):21-28
- 404 15. Frau R et al (2008) Sleep deprivation disrupts 405 prepulse inhibition of the startle reflex: reversal 406 by antipsychotic drugs. Int J 407 Neuropsychopharmacol 11(7):947–955
- 408 16. Ouagazzal AM, Jenck F, Moreau JL (2001)
 409 Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model
 411 for detecting antipsychotic activity?
 412 Psychopharmacology (Berl) 156(2–3):273–283
- 413 17. Eddins D et al (2010) Zebrafish provide a sen-414 sitive model of persisting neurobehavioral

effects of developmental chlorpyrifos exposure: 415 comparison with nicotine and pilocarpine 416 effects and relationship to dopamine deficits. 417 Neurotoxicol Teratol 32(1):99–108 418

- 18. Burgess HA, Johnson SL, Granato M (2009) 419
 Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8(5):500–511 423
- 19. Carvan MJ 3rd et al (2004) Ethanol effects on 424
 the developing zebrafish: neurobehavior and 425
 skeletal morphogenesis. Neurotoxicol Teratol 426
 26(6):757–768 427
- 20. Mann KD et al (2010) Cardiac response to
startle stimuli in larval zebrafish: sympathetic
and parasympathetic components. Am J Physiol
Regul Integr Comp Physiol
298(5):R1288–R1297428
430
- 21. Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22(1):63–73
 433
- 22. Orger MB et al (2004) Behavioral screening 436 assays in zebrafish. Methods Cell Biol 437 77:53–68 438
- 23. Meliska JA, Meliska CJ (1976) Effects of habituation on threat display and dominance establishment in the Siamese fighting fish, *Betta splendens*. Anim Learn Behav 4(2):167–171
 442
- 24. Wong K et al (2010) Analyzing habituation443responses to novelty in zebrafish (*Danio rerio*).444Behav Brain Res 208(2):450–457445
- 25. Burgess HA, Granato M (2007) Sensorimotor 446 gating in larval zebrafish. J Neurosci 447 27(18):4984–4994 448
- 26. Eaton RC, Bombardieri RA, Meyer DL (1977) 449
 The Mauthner-initiated startle response in 450
 teleost fish. J Exp Biol 66(1):65–81 451
- 27. Pelkowski SD et al (2011) A novel highthroughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res 223(1):135–144
 455
- 28. Griffith BB (2011) A larval zebrafish model of glucocorticoid-serotonin interactions in behavioral stress reactivity (Master's Thesis), 458 Humboldt State University: Arcata, CA, p 70 459
- 29. Delcourt J et al (2006) Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish. Behav Res Methods 38(4):704–710 464
- 30. Pham J et al (2009) Automated scoring of fearrelated behavior using EthoVision software.
 J Neurosci Methods 178(2):323–326
 467
- Noldus LP, Spink AJ, Tegelenbosch RA (2001)
 EthoVision: a versatile video tracking system
 for automation of behavioral experiments.
 470

S. Chanin et al.

471 Behav Res Methods Instrum Comput 33(3):
472 398-414

- 473 32. Marechal JP et al (2004) Settlement behav474 iour of marine invertebrate larvae measured
 475 by EthoVision 3.0. Biofouling 20(4–5):
 476 211–217
- 477 33. Cachat J et al (2011) Three-dimensional neurophenotyping of adult zebrafish behavior.
 479 PLoS One 6(3):e17597
- 34. Cachat J et al (2010) Measuring behavioral and
 endocrine responses to novelty stress in adult
 zebrafish. Nat Protoc 5(11):1786–1799
- 483 35. Dlugos CA, Rabin RA (2003) Ethanol effects
- and the strains of zebrafish: model system for

genetic investigations. Pharmacol Biochem 485 Behav 74(2):471–480 486

- 36. Zeddies DG, Fay RR (2005) Development of 487 the acoustically evoked behavioral response in 288 zebrafish to pure tones. J Exp Biol 208(Pt 489 7):1363–1372 490
- 37. Zurn J, Falls WA, Motai Y (2006) Detecting 491
 startle responses in the zebrafish using novel 492
 digital imaging techniques. Neuroscience 493
 Meeting Planner. Society for Neuroscience, 494
 SanDiego, CA 495
- Grieco F et al (2009) Noldus Ethovision XT7 496 reference manual. Noldus Information 497 Technology, Wageningen, The Netherlands 498

uncorrected