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A metabolite of the kynurenine pathway, kynurenic acid (KYNA) is an important endogenous neuromodulator
and neuroprotector, that also exerts neurotropic effects following exogenous administration. In humans and
animals, KYNA regulates affective and cognitive responses, acting mainly as an antagonist of glutamatergic
receptors. However, the complete psychopharmacological profile of KYNA (which includes the activity of several
neurotransmitter receptors) is poorly understood, andmerit further studies. Aquaticmodels are rapidly emerging
as useful tools in translational psychopharmacology research. Here, we exposed adult zebrafish (Danio rerio) to
exogenous KYNA for 20 min, and assessed their behavior in the novel tank test. Exposure to KYNA (20 mg/L)
in this paradigm evoked overt effects in fish, including decreased latency to enter the top half of the tank, in-
creasednumber of top entries and longer topduration. In contrast, locomotor activity indices (swimming distance
and velocity)were not affected by KYNA in this study. Overall, our results showKYNAhas an anxiolytic-like phar-
macological effect in zebrafish, and therefore strongly support the utility of zebrafish models in neurotropic drug
screening, including drugs acting at central glutamatergic system. Robust phenotypic differences evoked by
KYNA, revealed here using three-dimensional (3D) reconstructions of zebrafish locomotion in X, Y and time (Z)
coordinates, confirm this notion, also demonstrating the value of 3D-based phenotyping approaches for
high-throughput drug screening using zebrafish models.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Kynurenic acid (KYNA) is the product of tryptophan degradation via
the kynurenine pathway, which also leads to synthesis of neurotoxic
quinolinic acid and as well as tryptamines, such as serotonin and mela-
tonin (Lapin, 2000; Leklem, 1971; Schwarcz et al., 2012). KYNA acts
as an antagonist of several brain receptors, including glutamatergic
N-methyl-D-aspartate (NMDA) (Ganong and Cotman, 1986), kainate
(Coleman et al., 1986), nicotinic (Hilmas et al., 2001; Wu et al., 2010)
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors (Prescott et al., 2006; Schwarcz et al., 2012). In addition to
its exogenous activity, KYNA is also an important, endogenously pro-
duced neuromodulator (Lapin, 2000; Vezzani et al., 1991; Wu et al.,
1994) and neuroprotector (Amirkhani et al., 2002; Leib et al., 1996;
Marosi et al., 2010; Urenjak and Obrenovitch, 2000).

In humans, endogenous levels of KYNA serve as a biomarker for var-
ious brain dysfunctions, including Alzheimer's (Hartai et al., 2007) and
Parkinson's disorders (Hartai et al., 2005; Turski et al., 1991), as well
as schizophrenia and depression (Kocki et al., 2012; Schwarcz et al.,

2012). Paralleling clinical data, various pharmacological or experimental
(e.g., chronic unpredictable stress)manipulationsmarkedly alter endog-
enous levels of KYNA in rats (Wu and Schwarcz, 1996) and mice
(Laugeray et al., 2011). Collectively, this strongly supports the role of
KYNA as an important modulator of human and animal CNS functions
(Lapin, 2000; Vezzani et al., 1991; Wu et al., 1994).

Exogenous administration of KYNA at various doses in rodentmodels
also evokes biological responses, inducing ataxia, stereotyped behavior
and learning/memory deficits (Klein et al., 2004; Maj et al., 1994;
Vecsei and Beal, 1990, 1991). Suggesting a potential for anxiolytic-like
action of this compound, central administration of KYNA in animals
can also produce sedative and anti-stress responses (Yoshida et al.,
2012; Dennison et al., 1992). Indeed, as an anti-excitatory modulator,
KYNA evokes robust anticonvulsant and anxiolytic effects (Filippini et
al., 1996; Foster et al., 1984; Lapin, 1998, also see Rasmussen et al.,
1991), reducing the anxiogenic effects of caffeine, pentylenetetrazole,
yohimbine and quinolinic acid in the mouse dark–light box, and show-
ing an anxiolytic profile in the elevated plus-maze test (Lapin, 1998;
Lapin et al., 1990; Schmitt et al., 1990).

Despite recent clinical and pre-clinical findings, the psychopharmaco-
logical profile of KYNA remains poorly understood. The development of
novel high-throughput tests andexpanding the rangeofmodel organisms
are important strategic directions for screening smallmolecules and iden-
tifying potential drug candidates (Stewart et al., 2012a; Wong et al.,
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2010b). In addition,multiple KYNA analogswith varying pharmacological
profiles (Fuvesi et al., 2004; Robinson et al., 1985; Wardley-Smith et al.,
1989) merit further in-vivo screening for neurobehavioral effects.

Among severalmodel species, zebrafish (Danio rerio) offer a low-cost,
high-throughput and sensitive model that complements existing rodent
animal models of brain disorders. Possessing high physiological similar-
ity to humans (Alsop and Vijayan, 2009; Gonzalez-Nunez et al., 2006;
Lillesaar, 2011; Panula et al., 2010; Panula et al., 2006; Sundvik and
Panula, 2012; Tay et al., 2011), robust behavioral responses and a fully
characterized genome (Beliaeva et al., 2010; Cheng et al., 2011),
zebrafish are rapidly emerging as a useful organism for screening various
neuroactive compounds (Cachat et al, 2011).

Previous studies in larval zebrafish have shown that KYNAmodulates
swimming (Buss andDrapeau, 2001) and suppresses glutamatergic activ-
ity (Patten and Ali, 2007; Zhu et al., 2009), suggesting the importance of
KYNA in zebrafish brain mechanisms, including motor and behavioral
control. Pilot studies using KYNA as an anticonvulsant agent have also
demonstrated its ability to reduce epilepsy-like responses in zebrafish lar-
vae (Baraban et al., 2007), confirming that zebrafish are indeed likely to
be a sensitive in-vivo model for testing various central effects of KYNA
and related compounds.

Emphasizing the role of specific receptor systems in the drug-induced
phenotypes, recent studies have already reported the effects of lysergic
acid diethylamide (LSD), mescaline, phencyclidine (PCP), dizocilpine
(MK-801), ketamine, ibogaine, morphine and salvinorin A in adult
zebrafish (Cachat et al., 2013; Ewald, 2009; Grossman et al., 2010a;
Sison and Gerlai, 2011; Stewart et al., 2012b; Zakhary et al., 2011).
Given a growing recognition of the importance of KYNA and kynurenic
pathway as key modulators and potential drug targets in biological
psychiatry (Lapin, 2000; Schwarcz et al., 2012; Stone et al., 2012), and
capitalizing on fish's robust behavioral phenotypes highly sensitive to
pharmacological manipulations, the present study examined the phar-
macological effects of acute exposure to KYNA in adult zebrafish.

2. Methods

2.1. Animals and housing

A total of 80 adult (5–8 month old) “wild type” short-fin zebrafish
(~50:50male:female ratio) were obtained from a commercial distributor
(50 Fathoms, Metairie, LA). All fish were given at least 14 days to accli-
mate to the laboratory environment and housed in groups of 20–30 fish
per 40-L tank at the Animal Core of the ZENEREI Institute LLC. Tanks
were filled with filtered system water and maintained at 25–27 °C. Illu-
mination (1000–1100 lx) was provided by ceiling-mounted fluorescent
lights on a 12-h cycle (on: 6.00 h, off: 18.00 h) according to the standards
of zebrafish care (Westerfield, 2000). All animals used in this study were
experimentally naïve and fed Tetramin Tropical Flakes (TetraUSA, Blacks-
burg, VA) twice a day. Following behavioral testing, the animals were
euthanized in 500 mg/L Tricaine (Sigma-Aldrich, St. Louis, MO) and dis-
sected on ice for further analysis. Animal experimentation in this study
fully adhered to national and institutional guidelines and regulations,
and was approved by the ZENEREI Institute.

2.2. Behavioral testing

Behavioral testing was performed between 11.00 and 15.00 h using
tanks with water adjusted to the holding room temperature, assessing
zebrafish behavior in the novel tank test. Prior to testing, fish were
pre-exposed in a 1-L plastic beaker for 20 min to either drug-treated
or drug-free vehicle, 0.1% solution of dimethyl sulfoxide (DMSO, Fisher
Scientific, Waltham, MA, commonly used in zebrafish behavioral as-
says) (Goldsmith, 2004). Fish were then exposed to the novel tank
test, used to assess zebrafish anxiety and locomotion (Levin et al.,
2007; Stewart et al., 2011a; Stewart et al., 2011b). The apparatus
used consisted of a 1.5-L trapezoidal tank (15 cm height × 28 cm

top × 23 cmbottom × 7 cmwidth; Aquatic Habitats, Apopka, FL)max-
imally filled with water and divided into two equal virtual horizontal
portions by a line marking the outside walls (Fig. 1).

During testing, zebrafish behavior was recorded by 2 trained ob-
servers blind to the treatments, who used the stopwatch and manually
scored different behavioral endpoints (inter- and intra-rater reliability
in all experiments > 0.85), which included the latency to reach the
top half of the tank (s), time spent in top (s), number of transitions to
top, as well as the number and duration (s) of freezing bouts. Freezing
was defined as a total absence of movement, except for the gills and
eyes, for>2 s. Trialswere also recorded to a computer using a USBweb-
cam (2.0 megapixels, Gigaware, UK) and analyzed by Ethovision XT8.5
(Noldus IT, Wageningen, Netherlands), assessing swimming bouts,
swimming duration (s), latency to top (s), top entries, time in top (s),
distance traveled (m), and average velocity (m/s), as described else-
where (Cachat et al., 2012; Grossman et al., 2010b). In order to assess
intra-session (within-trial) habituation, reflecting spatial working
memory of zebrafish, we examined their responses over a 6-min trial,
analyzing the per-min distribution of behavioral endpoints mentioned
above, and comparing the first vs. last 3 min (s) and the first vs. last
(6th) minute values for each endpoint, as described previously (Wong
et al., 2010a).

2.3. Pharmacological manipulations

The doses for KYNA (Sigma-Aldrich, St. Louis, MO) were chosen
based on pilot studies (see below) as well as conversions from rodent
literature. A standard 20-min pre-treatment time was chosen in our
laboratory as the standard treatment test based on previous experi-
ments with other psychotropic drugs (Cachat et al., 2013; Sison and
Gerlai, 2011; Zakhary et al., 2011). In the pilot experiment, fish
were individually pre-exposed to various doses of KYNA (5, 10, 20
and 40 mg/L) or drug-free vehicle (0.1% vol/vol DMSO) for 20 min,
and tested in the standard 6-min novel tank test (n = 10–15 per
group). Overall, the doses of 5 and 10 mg/kg did not significantly
affect zebrafish behavior in any of the behavioral measures assessed,
albeit producing a non-significant trend towards increased time spent
in top and the number of top transitions (P > 0.05, U-test vs. control).
In contrast, higher doses of KYNA (20 and 40 mg/L) both produced
significant effects on these behaviors (P b 0.05, U-test), with the
dose of 20 mg/L being the most effective. As this dose was deemed
evoking the most overt behavioral effects, we used it for further de-
tailed analyses in our study, utilizing a larger cohort of zebrafish
(n = 20 per group).

2.4. Generation of spatiotemporal traces

During manual observation, videos were recorded in MPEG1 format
with the maximum sample rate 30 fps for each trial by auto-focusing
2.0 MP USB webcams, placed 50 cm in front of or on top of the tanks,
and attached to laptop computers. For each experiment, raw track
data was exported into Excel spreadsheets, pre-processed and formatted
to generate 3D swim path reconstructions, as described previously
(Cachat et al., 2010; Cachat et al., 2011). Temporal 3D reconstructions
were created in a Scatter 3D Color plot, in which X-center, time, and
Y-centerwere attributed to theX, Y- and Z-axes, respectively. Dependent
variables were actively cycled across the path using the color attribute,
and tracks were explored using rotation and zooming features. For com-
parison, axis ranges were standardized, and reconstructions were saved
as image files. Generated traces were independently rated, on a consen-
sus basis from 1 to n, by three trained observers blinded to the treat-
ments, as described elsewhere (Cachat et al., 2011; Grossman et al.,
2010b; Kyzar et al., 2012). This visual assessment was based on general
similarity of generated 3D traces (to each other) in terms of spatial
distribution of activity (top/bottom), overall amount of locomotion
(high/low), and pattern of observed activity (typical/aberrant)
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within each group. Generally characterized by a tight clustering of
the independent raters' scores, this approach enables a rapid selec-
tion of the median trace, to be used as representative of the group
for the visual illustration (Fig. 1B) reflecting the global spatiotempo-
ral pattern of zebrafish swimming (Cachat et al., 2011; Grossman et
al., 2010b; Kyzar et al., 2012).

2.5. Statistical analyses

The behavioral datawas analyzed usingANOVA (factors: time, dose)
or Wilcoxon–Mann–Whitney U-test (with or without the Bonferroni
correction, where appropriate). Inter- and intra-rater reliability for the
observers was determined by Spearman correlation. Data were
expressed as mean ± SEM, and significance was set at P b 0.05 in all
experiments of this study. In habituation assays, data was analyzed
using a two-sample paired U-test for significance between the initial
(i.e., min 1 or first 3 min) and the last observation time (min 6 or last
3 min, respectively), followed by the Bonferroni correction, where ap-
propriate. Significance was set at P b 0.05 for U-test, but was adjusted
accordingly for Bonferroni corrected post-hoc tests.

3. Results

In the novel tank test, acute (20-min) exposure to 20 mg/L KYNA
induced a generally anxiolytic-like effect, significantly decreasing la-
tency to the top half of the tank, and increasing the number of top en-
tries and top duration (s) (Fig. 1A). Manual observations also
paralleled the 3D traces generated through the video-tracking analy-
sis, with KYNA-treated fish entering the top of the tank sooner and

spending a greater duration of the trial there, while not altering gen-
eral locomotion measures, such as velocity and distance traveled
(Fig. 1A and B). KYNA also did not evoke overt circling behavior in
this study, which was not observed in both control and experimental
groups. Further analysis demonstrated no significant time or
time × drug effects following exposure to 20 mg/L KYNA (ANOVA
P > 0.05 for time and time × drug effects), suggesting that KYNA
treatment does not uniquely affect the temporal patterning of
zebrafish behavior. KYNA also did not significantly alter zebrafish
habituation in the novel tank, since both first vs. last 3 min (s) and
the first vs. 6th minute values for each endpoint were relatively sim-
ilar between controls and KYNA-exposed fish (P > 0.05, U-test for all
measures).

4. Discussion

This is the first study reporting the behavioral anxiolytic effects of
KYNA in zebrafish (Fig. 1). While previous pilot investigation of circling
and shoaling behavior following 1-h KYNA exposure (1.9, 19 and
190 mg/L in 1% DMSO) in adult zebrafish yielded no effects (Ewald,
2009), our results indicate that 20 mg/L KYNA produces an anxiolytic-
like profile (increased top swimming) in zebrafish in the novel tank
paradigm, without affecting general locomotor activity levels, as
assessed by unaltered distance traveled and velocity (Fig. 1A). In gener-
al, this profile is consistent with the known anti-anxiety effects of KYNA
in various other model organisms (Lapin, 1998; Lapin et al., 1990;
Schmitt et al., 1990). The fact that KYNA exerts consistent behavioral ef-
fects in different species supports the anxiolytic profile of this com-
pound, also emphasizing the utility of zebrafish high-throughput

Fig. 1. Behavioral effects of acute 20-min kynurenic acid (KYNA) exposure in adult zebrafish tested in the novel tank. (A) Behavioral endpoints were obtained in the standard 6-min
novel tank test for 20 mg/L KYNA (n = 20 per group). (B) Temporal 3D graphs plotted XY-coordinates (generated in Ethovision XT8.5) on respective XY-axes, with experimental
time plotted across the Z-axis (Cachat et al., 2010; Cachat et al., 2011). Track color reflects changes in velocity (m/s; blue to green = lower velocity, yellow to red = higher velocity).
#P = 0.05–0.08 (trend), *P b 0.05, **P b 0.01 vs. control;U-test. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version of this article.)
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in-vivo screens to study the psychopharmacology of KYNA and related
compounds.

Recent evidence suggests that KYNAmay act viamultiple brain re-
ceptors, including the alpha7 nicotinic receptors (Stone, 2007), (but
see conflicting data in (Dobelis et al., 2012)) which may contribute
to some neurophysiological effects of the drug. Nevertheless, as al-
ready mentioned, the key, well-established mechanism of KYNA
action is the antagonism of glutamatergic receptors (Ganong and
Cotman, 1986; Schwarcz et al., 2012; Wu et al., 1994). It was there-
fore interesting to compare the effects of KYNA with the activity of
other glutamatergic antagonists in zebrafish models. Several agents
sharing this mode of action have recently been tested in zebrafish.
For example, ketamine (Riehl et al., 2011), PCP (Kyzar et al., 2012),
MK-801 (Sison and Gerlai, 2011) and ibogaine (Cachat et al., 2013)
all increase top-swimming and exert anxiolytic-like action in various
zebrafish models. Given elevated top swimming produced by KYNA
here (Fig. 1), this collectively implies a shared anxiolytic profile of var-
ious NMDA antagonists in zebrafish, further supporting the utility of
aquatic models for glutamatergic drug discovery and small molecule
screening.

Importantly, clinical and rodent literature generally shows anxio-
lytic effects associated with NMDA antagonism (Bubser et al., 1992;
Corbett et al., 1995; Engin et al., 2009; Garcia et al., 2009; Inta et al.,
2012; Irwin and Iglewicz, 2010; Kehne et al., 1991; Laugeray et al.,
2011; Liu et al., 2009; Loss et al., 2012; Louzada-Junior et al., 1992;
Plaznik et al., 1994; Riaza Bermudo-Soriano et al., 2012; Turgeon et
al., 2011). Taken together, this raises the possibility that zebrafish
may represent efficient and sensitive screens for anxiolytic responses
mediated through the central glutamatergic system. On the other
hand, the above-mentioned similarity of drug-induced profiles across
different species strongly supports the translational value of zebrafish
models for targeting evolutionarily conserved molecular pathways,
including mimicking human phenotypes associated with modulation
of anxiety by glutamatergic compounds.

Since KYNA and several other glutamatergic antagonists can also im-
pair reference and working memory in rats (Klein et al., 2004), we
assessed the effects of KYNA on zebrafish spatial working memory in
the habituation task. While KYNA exposure did not significantly affect
habituation in this study, this profile was similar to the effects of other
anxiolytics (e.g.,fluoxetine andethanol;Wonget al., 2010a) on zebrafish
habituation, albeit deviating from some rodent findings (File and
Mabbutt, 1990; Kaneko et al., 2007). Inter-species differences in habitu-
ation to noveltymay explain these observations, since rodents generally
reduce locomotion with increasing familiarity to a novel environment
(Leussis and Bolivar, 2006; Mar et al., 2000), while zebrafish do the
opposite (Best et al., 2008; Wong et al., 2010a). Clearly, more specific
memory/learning tasks may be necessary to more fully investigate the
effects of KYNA on zebrafish cognitive responses (also see recent inno-
vative 'integrative', more global approaches to zebrafish cognitive
phenotyping in (Stewart et al., 2012b)).

There were several other limitations of this study. For example,
since we only focused on anxiety-, habituation- and motor-related
phenotypes, further investigation may assess other neurobehavioral
domains in zebrafish. As KYNA and other glutamatergic antagonists
may modulate learning/memory and social behavior in rodents
(Hlinak and Krejci, 1995), future analysis of KYNA modulation of those
behaviors in zebrafish is warranted. Another aspect to consider is the
potential role of sex- and strain-differences in zebrafish behaviors. This
study used wild type short-fin zebrafish with an approximate 50:50
male/female ratio, similar to multiple published studies from other
groups (Khor et al., 2011; Pather and Gerlai, 2009; Rosemberg et al.,
2011). Given known sex/strain differences in behavioral responses of
zebrafish to various drugs (Dlugos et al., 2011; Vital and Martins,
2011), the analyses of these factors in KYNA effects require further in-
vestigation. Since the role of KYNA in fish biology remains poorly under-
stood, it will also be important to examine the role of endogenous vs.

exogenous KYNA levels in the observed responses, as well as to assess
their sustainability and the potential long-term (e.g., delayed) effects
of KYNA administration.

Furthermore, we focused on the acute effects of KYNA here, and
therefore potential differences in acute and chronic KYNA effects in
zebrafish merit further scrutiny, especially given its well-known ef-
fects on neuroprotection (Andine et al., 1988), brain plasticity
(Schwarcz et al., 2012) and long-term responses in rodents (Dennison
et al., 1992;Maj et al., 1994). The potential of drug–drug interaction, es-
pecially targeting possible additive/synergistic interactions between
KYNA and other anti-glutamatergic agents, may be another application
for zebrafish-based screens developed here. Likewise, while KYNA and
other kynurenines form an evolutionarily conserved molecular path-
way (Schwarcz et al., 2012), they play a key role in both the regulation
of brain processes and peripheral (e.g., immune or metabolic) mecha-
nisms. Therefore, their central and peripheral modulation in zebrafish
merits further studies. Also relevant here is the ability of KYNA to
cross the blood–brain barrier (BBB). For example, KYNA does not read-
ily cross the BBB in rodents (Fukui et al., 1991), necessitating the use of
its analogs that cross this barriermore easily (Fuvesi et al., 2004), or ap-
plying KYNA centrally (Ericson et al., 1990; Fuvesi et al., 2004; Schmitt
et al., 1990; Yoshida et al., 2012), in order to exogenously modulate
brain phenotypes. At the same time, the fact that various rodent studies
(Filippini et al., 1996; Lapin, 1998; Lapin et al., 1990) successfully used
i.p., i.v. or s.c. administration of KYNA, indicates that psychopharmaco-
logical effects of this drug can be evoked exogenously and following
systemic treatment. In zebrafish, systemic administration of various
pharmacological compounds by immersionwas efficient for their cross-
ing the BBB (Watanabe et al., 2012), and this aspect may underlie the
behavioral effects evoked here by KYNA (Fig. 1). Thus, the possibility
of using zebrafish for in-vivo smallmolecule testing becomes particularly
promising, given the ease and throughput of systemic drug administra-
tion via immersion in this model, such as used here.

Moreover, our analyses reveal interesting aspects of the efficacy of
KYNA (relative to other glutamatergic antagonists) across several dif-
ferent species (Table 1). For example, in the present study, behavioral
effects were observed acutely following a 20-mg/L treatment with
KYNA (Fig. 1). Based on published data (Table 1), this exogenous
dose was equally potent to ketamine and ibogaine, but ~10 times
less potent than PCP and ~100 times less potent than MK-801. In
rodents, exogenous KYNA appears to be slightly less potent than
ketamine and ibogaine, but again was markedly less potent than
PCP (30–40 times) and MK-801 (200 times). Taken together, this
indicates that the effects of KYNA and other glutamatergic antago-
nists in fish generally parallel those observed in mammals, with the
ranking of relative efficacy (exogenous MK-801 > PCP > ketamine,
ibogaine > KYNA) similar across different species (Table 1). The lack
of drug-evoked circling behavior here and in earlier observations
(Ewald, 2009) was somewhat surprising, but is generally in line with
a lower glutamatergic antagonism produced by KYNA relative to other
NMDA agents, such as ketamine, MK-801 and PCP, which all induce
overt circling in both zebrafish and rodent models (see Ewald, 2009;
Kyzar et al., 2012; Riehl et al., 2011 for details).

Notably, the ability of KYNA to evoke physiological (anti-
glutamatergic) effects in larval models (Buss and Drapeau, 2001;
Patten and Ali, 2007) further supports the utility of zebrafish to study
KYNA-induced phenotypes. The robust anxiolytic phenotypes identified
for KYNA in this study in adult zebrafish (Fig. 1) are similar to profiles
evoked by other glutamatergic antagonists, emphasizing the translation-
al value of zebrafishmodels for psychopharmacology research. Given the
growing importance of glutamatergic compounds in biological psychia-
try (Javitt, 2004; Riaza Bermudo-Soriano et al., 2012; Yasuhara and
Chaki, 2010), the discovery of glutamatergic drug targets becomes a crit-
ical task. As our present study suggests (also see fish data in Table 1),
zebrafish can offer a promising and sensitive novel model for achieving
this goal. However, given the possibility of multiple other receptor
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targets for KYNA (e.g., Hilmas et al., 2001; Wu et al., 2010), zebrafish
models may be useful for investigating these additional neuroactive
pathways as well.

Overall, our results show high sensitivity of zebrafish to exogenously
administered KYNA, revealing an anxiolytic pharmacological profile of
this compound, consistent with its known action in clinical and rodent
studies. Finally, robust phenotypic differences revealed here using 3D re-
constructions and visualization of zebrafish locomotion (Fig. 1B), further
confirm this notion, also demonstrating the utility of 3D-based
phenotyping approaches for high-throughput drug screening in adult
zebrafish (Cachat et al., 2010; Cachat et al., 2011). Collectively, these
findings strongly support the developing utility of zebrafish models in
in-vivo neurotropic drug screening and drug discovery.
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